研究论文

夏季极端高温预测模型系统及实际应用

  • 张井勇 ,
  • 杨占梅 ,
  • 吴凌云
展开
  • 1.中国科学院大气物理研究所 地球系统数值模拟与应用全国重点实验室,北京 100029
    2.湖南工商大学 资源环境学院,湖南 长沙 410205
    3.中国科学院大学 地球与行星科学学院,北京 100049
    4.碳中和与智慧能源湖南省重点实验室,湖南 长沙 410205
    5.中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
张井勇,主要从事地球系统模拟与气候预测、碳中和与气候变化等研究. E-mail:zjy@mail.iap.ac.cn

收稿日期: 2025-03-21

  修回日期: 2025-04-28

  网络出版日期: 2025-07-03

基金资助

国家重点研发计划项目(2018YFA0606500);国家重大科技基础设施项目(2023-EL-ZD-00068)

Prediction Model System for Summer Heat Extremes and Its Practical Applications

  • Jingyong ZHANG ,
  • Zhanmei YANG ,
  • Lingyun WU
Expand
  • 1.State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
    3.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    4.Hunan Provincial Key Laboratory of Carbon Neutrality and Intelligent Energy, Changsha 410205, China
    5.State Key Laboratory of Atmospheric Physics and Earth Fluid Dynamics Numerical Simulation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
ZHANG Jingyong, research areas include Earth system numerical simulation and climate prediction, carbon neutrality and climate change. E-mail: zjy@mail.iap.ac.cn

Received date: 2025-03-21

  Revised date: 2025-04-28

  Online published: 2025-07-03

Supported by

the National Key Research and Development Program of China(2018YFA0606500);National Large Scientific and Technological Infrastructure Project(2023-EL-ZD-00068)

摘要

夏季极端高温是我国最主要的气象灾害之一,对人们的健康与生命、社会经济的稳定发展以及生态环境的平衡等均造成严重威胁。面向防范和应对高温相关灾害风险的国家重大需求,基于科学新认识张井勇团队自主研发了我国夏季极端高温预测模型系统并开展了实际应用。2018年以来该预测模型系统的实际预测表明,其总体上能够比较准确地预测出我国夏季极端高温的空间分布与异常,展现出稳定而良好的预报效果。2025年5月运用该模型系统开展的预测显示,2025年夏季我国平均高温日数为12.55天,比常年(1991—2020年气候平均态)偏多2.69天,极端高温影响总体明显偏重、灾害风险明显偏高、区域差异性大。长江中下游地区、华南地区、四川盆地、新疆南部、江苏与安徽北部高温日数偏多最为明显。京津平原地区、山东、河南、陕西南部地区、东北少部分地区、甘肃部分地区以及宁夏北部等地极端高温日数明显偏多。最后,针对我国夏季极端高温的防范提出了建议。

本文引用格式

张井勇 , 杨占梅 , 吴凌云 . 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025 , 40(5) : 516 -524 . DOI: 10.11867/j.issn.1001-8166.2025.040

Abstract

Summer heat extremes are among the major meteorological disasters in China, posing severe threats to public health, economic and social development, and natural ecosystems. To address the nation's urgent need for managing heat-related disaster risks, we independently developed a prediction model system for summer heat extremes in China, based on new scientific insights. Since 2018, the model system has demonstrated stable and reliable predictive capabilities, relatively accurately capturing the spatial patterns and anomalies of summer heat extremes. In May 2025, using this system, we predicted that the number of summer hot days in 2024 would be 12.55 days, which is 2.69 days more than the average of normal years (1991-2020). The forecast also indicated more severe heat extremes, elevated disaster risks, and pronounced regional differences. The most significant above-normal heat extremes were expected in the middle and lower reaches of the Yangtze River Basin, South China, the Sichuan Basin, southern Xinjiang, northern Jiangsu, and northern Anhui. These were followed by the Beijing-Tianjin Plain, Shandong, Henan, southern Shaanxi, parts of northeastern China, parts of Gansu, and northern Ningxia. Based on these findings, we also provide response recommendations to prevent and mitigate the impacts of summer heat extremes across China.

参考文献

[1] IPCC. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021: 3-32. DOI:10.1017/9781009157896.001 .
[2] IPCC. Climate change 2023: synthesis report[R]. Geneva: IPCC, 2023: 35-115. DOI:10.59327/IPCC/AR6-9789291691647 .
[3] Panel for the Fourth National Assessment Report on Climate Change. Fourth national assessment report on climate change [M]. Beijing:Science Press,2022.
  《第四次气候变化国家评估报告》编写委员会. 第四次气候变化国家评估报告 [M]. 北京:科学出版社,2022.
[4] WMO, UNEP, GCP, et al. United in science 2022[R/OL]. Geneva: WMO, 2022. [2025-04-16]. .
[5] WMO, UNEP, GCP, et al. United in science 2023[R/OL]. Geneva: WMO, 2023. [2025-04-16]. .
[6] WMO. The global climate 2011-2020: a decade of acceleration[R/OL]. Geneva: WMO, 2023. [2025-04-16]. .
[7] WMO. State of the global climate 2024[R/OL]. Geneva: WMO, 2025. [2025-04-16]. .
[8] SCHAEFFER M, STOKER P, TORRES R R, et al. Ten new insights in climate science 2024[J]. One Earth2025. DOI:10.1016/j.oneear.2025.101285 .
[9] ROMANELLO M, NAPOLI C D, DRUMMOND P, et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels[J]. Lancet2022400: 1 619-1 654.
[10] ROMANELLO M, NAPOLI C D, GREEN C, et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms[J]. Lancet2023402: 2 346-2 394.
[11] ROMANELLO M, WALAWENDER M, HSU S C, et al. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action[J]. Lancet2024404(10 465): 1 847-1 896.
[12] World Economic Forum in Collaboration with Allianz. Insuring against extreme heat: navigating risks in a warming world[R/OL]. Cologny: WEF, 2025. [2025-04-16]. .
[13] WANG Changlin, CHEN Zhenlin, CHEN Ying,et al. Annual report on actions to address climate change (2024)[M]. Beijing: Social Sciences Academic Press,2024.
  王昌林,陈振林,陈迎,等. 应对气候变化报告(2024) [M]. 北京:社会科学文献出版社,2024.
[14] ZHUANG Guotai, GAO Peiyong, CHEN Ying, et al. Green book of climate change: annual report on actions to address climate change (2022)—policies and practices to implement the dual carbon goals [M]. Beijing: Social Sciences Academic Press, 2022.
  庄国泰, 高培勇, 陈迎, 等. 气候变化绿皮书:应对气候变化报告(2022)——落实“双碳”目标的政策和实践 [M]. 北京: 社会科学文献出版社, 2022.
[15] HUA Wenjian, FENG Huiting, CUI Yazhu, et al. 2022 summertime heat extremes in the Yangtze River Basin:review and prospect[J]. Advances in Earth Science2025. DOI: 10.11867/j.issn.1001-8166.2025.023 .
  华文剑,冯慧婷,崔亚朱,等. 2022年夏季长江流域极端高温的研究进展与展望[J]. 地球科学进展. 2025. DOI:10.11867/j.issn.1001-8166.2025.023 .
[16] United Nations Environment Programme. Emissions gap report 2024: no more hot air... please[R]. Nairobi: UNEP, 2024. DOI:10.59117/20.500.11822/46404 .
[17] ZHANG J Y, WU L Y. Land-atmosphere coupling amplifies hot extremes over China[J]. Chinese Science Bulletin201156(31): 3 328-3 332.
[18] WU L, ZHANG J Y, DONG W J. Vegetation effects on mean daily maximum and minimum surface air temperatures over China[J]. Chinese Science Bulletin201156(9): 900-905.
[19] ZHANG Jingyong, WU Lingyun. Impacts of land-atmosphere interactions on climate over East Asia[M]. Beijing: China Meteorological Press, 2014.
  张井勇, 吴凌云. 陆—气相互作用对东亚气候的影响[M]. 北京: 气象出版社, 2014.
[20] ZHANG J Y, WU L Y, DONG W J. Land-atmosphere coupling and summer climate variability over East Asia[J]. Journal of Geophysical Research2011116(D5). DOI: 10.1029/2010JD014714 .
[21] ZHANG J Y, WU L Y, HUANG G, et al. The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction[J]. Journal of Geophysical Research2011116(D5). DOI:10.1029/2010JD015095 .
[22] ZHANG J Y, YANG Z M, WU L Y. Skillful prediction of hot temperature extremes over the source region of ancient Silk Road[J]. Scientific Reports20188(1). DOI:10.1038/s41598-018-25063-x .
[23] ZHANG J Y, YANG Z M, WU L Y, et al. Summer high temperature extremes over northeastern China predicted by spring soil moisture[J]. Scientific Reports20199(1). DOI:10.1038/s41598-019-49053-9 .
[24] WU L Y, ZHANG J Y. Asymmetric effects of soil moisture on mean daily maximum and minimum temperatures over eastern China[J]. Meteorology and Atmospheric Physics2013122(3): 199-213.
[25] WU L Y, ZHANG J Y. The relationship between spring soil moisture and summer hot extremes over North China[J]. Advances in Atmospheric Sciences201532(12): 1 660-1 668.
[26] YANG Zhanmei, ZHANG Jingyong. Seasonal prediction of summer temperature over Central Asia[J]. Climatic and Environmental Research201924(2): 251-261.
  杨占梅, 张井勇. 中亚地区夏季温度的季节预测[J]. 气候与环境研究201924(2): 251-261.
[27] ZHANG Jingyong, ZHUANG Yuanhuang, ZHANG Lixia, et al. Future projections of weather and climate extremes in major Belt and Road regions[M]. Beijing: China Meteorological Press, 2019.
  张井勇, 庄园煌, 张丽霞, 等. “一带一路”未来极端天气气候预估研究[M]. 北京: 气象出版社, 2019.
[28] YANG Z M, ZHANG J Y. Dataset of high temperature extremes over the major land areas of the Belt and Road for 1979-2018[J]. Big Earth Data2020. DOI:10.1080/20964471.2020.1718993 .
[29] YANG K, ZHANG J Y, WU L Y, et al. Prediction of summer hot extremes over the middle and lower reaches of the Yangtze River valley[J]. Climate Dynamics201952(5): 2 943-2 957.
[30] YANG Z M, ZHANG J Y, WU L Y. Spring soil temperature as a predictor of summer heatwaves over northwestern China[J]. Atmospheric Science Letters201920(3). DOI:10.1002/asl.887 .
[31] YANG Z M, ZHANG J Y, LIU Y, et al. The substantial role of May soil temperature over Central Asia for summer surface air temperature variation and prediction over northeastern China[J]. Climate Dynamics202462(4): 2 719-2 733.
[32] LI K, ZHANG J Y, YANG K, et al. The role of soil moisture feedbacks in future summer temperature change over East Asia[J]. Journal of Geophysical Research: Atmospheres2019124(22): 12 034-12 056.
[33] LI K, ZHANG J Y, WU L Y, et al. The role of soil temperature feedbacks for summer air temperature variability under climate change over East Asia[J]. Earth’s Future202210(4). DOI:10.1029/2021EF002377 .
[34] YANG Zhanmei, ZHANG Jingyong, DU Zhencai. The critical role of spring soil temperature in predicting interannual variability of midsummer precipitation over northeastern China[J]. Chinese Journal of Atmospheric Sciences202448(4): 1 379-1 391.
  杨占梅, 张井勇, 杜振彩. 春季土壤温度在中国东北盛夏降水年际分量预测中的关键作用[J]. 大气科学202448(4) : 1 379-1 391.
[35] ZHANG Jingyong. New framework for studies of climate change projections and risks oriented towards carbon neutrality[J]. Advances in Earth Science202540(1): 15-20.
  张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展202540(1): 15-20.
[36] ZENG Qingcun, YUAN Chongguang, WANG Wanqiu, et al. Numerical prediction experiment of inter-seasonal climate anomaly[J]. Chinese Journal of Atmospheric Sciences199014(1): 10-25.
  曾庆存, 袁重光, 王万秋, 等. 跨季度气候距平数值预测试验[J]. 大气科学199014(1): 10-25.
[37] SHUKLA J. Predictability in the midst of chaos: a scientific basis for climate forecasting[J]. Science1998282: 728-731.
[38] REN Hongli, CHOU Jifan. Research on strategy and method of dynamic similarity prediction[J]. Science in China Series D: Earth Sciences200737(8): 1 101-1 109.
  任宏利, 丑纪范. 动力相似预报的策略和方法研究[J]. 中国科学D辑: 地球科学200737(8): 1 101-1 109.
[39] DING Yihui. Progress and prospects of seasonal climate prediction[J]. Advances in Meteorological Science and Technology20111(3): 14-27.
  丁一汇. 季节气候预测的进展和前景[J]. 气象科技进展20111(3): 14-27.
[40] FENG Guolin, ZHAO Junhu, YANG Jie, et al. Study on dynamic-statistical prediction of precipitation in flood season in China[M]. Beijing: Science Press, 2015.
  封国林, 赵俊虎, 杨杰, 等. 中国汛期降水动力—统计预测研究[M]. 北京: 科学出版社, 2015.
[41] CHEN Haishan, ZHANG Yaocun, ZHANG Wenjun, et al. Research on weather and climate extremes over China: brief introduction and recent progress of the national key R & D program of China for Earth system and global change[J]. Transactions of Atmospheric Sciences202447(1): 23-45.
  陈海山, 张耀存, 张文君, 等. 中国极端天气气候研究: “地球系统与全球变化” 重点专项项目简介及最新进展[J]. 大气科学学报202447(1): 23-45.
[42] WANG Huijun, DAI Yongjiu, YANG Song, et al. Climate system prediction: fundamental innovations and integrated applications[J]. Transactions of Atmospheric Sciences202447(2): 161-172.
  王会军, 戴永久, 杨崧, 等. 气候系统预测: 基础创新和集成应用[J]. 大气科学学报202447(2): 161-172.
[43] RASMUSSON E M, WALLACE J M. Meteorological aspects of the El Ni?o/Southern Oscillation[J]. Science1983222: 1 195-1 202.
[44] BARNSTON A G, LIVEZEY R E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns[J]. Monthly Weather Review1987115(6): 1 083-1 126.
[45] WEBSTER P J, YANG S. Monsoon and ENSO: selectively interactive systems[J]. Quarterly Journal of the Royal Meteorological Society1992118: 877-926.
[46] WANG Huijun, SUN Jianqi, LANG Xianmei, et al. Some new results in the research of the interannual climate variability and short-term climate prediction[J]. Chinese Journal of Atmospheric Sciences200832(4): 806-814.
  王会军, 孙建奇, 郎咸梅, 等. 几年来我国气候年际变异和短期气候预测研究的一些新成果[J]. 大气科学200832(4): 806-814.
[47] SUN Zhaobo, CHEN Haishan, TAN Guirong, et al. Elements of short period climate predictions[M]. Beijing: China Meteorological Press, 2010.
  孙照渤, 陈海山, 谭桂容, 等. 短期气候预测基础[M]. 北京: 气象出版社, 2010.
[48] PENG Jingbei, BUEH Cholaw, ZHENG Fei, et al. Prospect of national climate trend in summer of 2018[J]. Bulletin of Chinese Academy of Sciences201833(6): 630-636.
  彭京备, 布和朝鲁, 郑飞, 等. 2018年夏季全国气候趋势展望[J]. 中国科学院院刊201833(6): 630-636.
[49] TIMMERMANN A, AN S I, KUG J S, et al. El Ni?o-Southern Oscillation complexity[J]. Nature2018559: 535-545.
[50] REN H L, ZUO J Q, DENG Y. Statistical predictability of Ni?o indices for two types of ENSO[J]. Climate Dynamics201952(9): 5 361-5 382.
[51] ZHAO Junhu, CHEN Lijuan, ZHANG Daquan. Overview of climate prediction for the summer 2021 in China and its precursors[J]. Meteorological Monthly202248(4): 479-493.
  赵俊虎, 陈丽娟, 章大全. 2021年汛期气候预测效果评述及先兆信号分析[J]. 气象202248(4): 479-493.
[52] FAN Fangxing, ZHENG Fei, PENG Jingbei, et al. Climate prediction and outlook in China for the flood season[J]. Climatic and Environmental Research202328(4): 450-460.
  范方兴, 郑飞, 彭京备, 等. 2023年汛期气候趋势预测与展望[J]. 气候与环境研究202328(4): 450-460.
[53] YEH T C, WETHERALD R T, MANABE S. The effect of soil moisture on the short-term climate and hydrology change—a numerical experiment[J]. Monthly Weather Review1984112: 474-490.
[54] KOSTER R D, DIRMEYER P A, GUO Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science2004305: 1 138-1 140.
[55] BONAN G B. Ecological climatology[M]. 2nd ed. Cambridge: Cambridge University Press, 2008.
[56] ZHANG J Y, WANG W C, WEI J F. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation[J]. Journal of Geophysical Research: Atmospheres2008113(D17). DOI:10.1029/2008JD009807 .
[57] BETTS A K. Land-surface-atmosphere coupling in observations and models[J]. Journal of Advances in Modeling Earth Systems20091(3). DOI:10.3894/JAMES.2009.1.4 .
[58] DIRMEYER P A, SCHLOSSER C A, BRUBAKER K L. Precipitation, recycling, and land memory: an integrated analysis[J]. Journal of Hydrometeorology200910(1): 278-288.
[59] SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews201099(3/4): 125-161.
[60] XUE Y K, YAO T D, BOONE A A, et al. Impact of initialized land surface temperature and snowpack on subseasonal to seasonal prediction project, phase I (LS4P-I): organization and experimental design[J]. Geoscientific Model Development202114(7): 4 465-4 494.
[61] GUO Yi, CHEN Haishan, DONG Yinshuo. Extreme compound drought and high temperature event in summer 2022 in the Yangtze River Basin and possible contribution of land surface feedback[J]. Chinese Journal of Atmospheric Sciences202549(1): 229-244.
  郭祎, 陈海山, 董寅硕. 2022年长江中下游夏季极端高温干旱复合事件及陆面反馈的可能贡献[J]. 大气科学202549(1): 229-244.
文章导航

/