研究论文

天山北坡短叶羊茅的烷烃和烯烃地球化学特征与环境响应

  • 韦枫 ,
  • 吴保祥 ,
  • 谢文欣
展开
  • 1.干旱区生态安全与可持续发展重点实验室,中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.甘肃省地质矿产勘查局第二地质矿产勘查院,甘肃 兰州 730020
    3.自然资源部黄河上游战略性 矿产资源重点实验室,甘肃 兰州 730000
    4.中国科学院大学,北京 100049
韦枫,主要从事有机地球化学研究. E-mail:1354969978@qq.com
吴保祥,主要从事油气地质与地球化学研究. E-mail:bxwu@foxmail.com

收稿日期: 2025-01-15

  修回日期: 2025-03-17

  网络出版日期: 2025-05-09

基金资助

第三次新疆综合科学考察项目(2021xjkk1104)

Geochemical Characteristics of Alkanes and Olefins of Festuca brachyphylla Schult. & Schult. f. and Environmental Responses, Northern Tianshan Mountain

  • Feng WEI ,
  • Baoxiang WU ,
  • Wenxin XIE
Expand
  • 1.Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.The Second Geological and Mineral Exploration Institute of Gansu Provincial Bureau of Geology and Mineral Exploration and Development, Lanzhou 730020, China
    3.Key Laboratory of Strategic Mineral Resources in the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
WEI Feng, research area includes geochemistry. E-mail: 1354969978@qq.com
WU Baoxiang, research areas include petroleum geology and geochemistry research. E-mail: bxwu@foxmail.com

Received date: 2025-01-15

  Revised date: 2025-03-17

  Online published: 2025-05-09

Supported by

the Third Comprehensive Scientific Investigation to Xinjiang Program(2021xjkk1104)

摘要

草本植物烃类化合物对评估高海拔寒冷干旱地区生态及环境变化具有重要意义。通过有机地球化学方法,对天山高寒旱地区草本植物短叶羊茅(Festuca brachyphylla Schult. & Schult. f.)中烷烃和烯烃进行了分析。结果表明,高寒旱区短叶羊茅中烷烃分布范围为C16~C29,平均碳链长度为17.91~24.49,主峰碳主要为C16、C18和C29。烯烃分布范围为C16~C31,多数以C18或C20为主峰碳,平均碳链长度为22.19~26.23,呈双峰型分布。烷烃和烯烃同时展现出整体低碳数组分(烷烃碳数≤23;烯烃碳数<27)相对含量高,在低碳数组分中偶碳优势和在高碳数组分中奇碳优势明显的特征。通过对比湿热和干旱等环境发现,天山高寒旱区短叶羊茅具有低碳数烷烃和烯烃组分含量高、平均碳链长度值小、奇偶优势在高低碳数烷烃和烯烃组分中分化的独特地球化学特征。同时,烯烃的平均碳链长度受到水源补给条件影响,水源条件好的短叶羊茅中烯烃值较大;短叶羊茅中烷烃与烯烃的平均碳链长度具有较为密切的正相关性。研究结果可为理解高寒旱区草本植物的生态适应机制,以及评估环境变化对生态系统影响提供重要参考。

本文引用格式

韦枫 , 吴保祥 , 谢文欣 . 天山北坡短叶羊茅的烷烃和烯烃地球化学特征与环境响应[J]. 地球科学进展, 2025 , 40(4) : 413 -423 . DOI: 10.11867/j.issn.1001-8166.2025.025

Abstract

Hydrocarbon compounds in herbaceous plants play an important role in assessing ecological and environmental changes in cold, arid, high altitude regions. The alkanes and olefins in Festuca brachyphylla Schult. & Schult. f. From high-altitude, cold and arid region of the Tianshan Mountain was analyzed using organic geochemical methods to determine their geochemical characteristics and environmental responses. The results showed that, for alkanes, the carbon numbers ranged from C16 to C29. The Average carbon Chain Length (ACLAlk) ranged from 17.91 to 24.49, with C16, C18 and C29 as the main peak carbon numbers. For olefins, the carbon number ranged from C16 to C31, the Average carbon Chain Length (ACLOle) ranged from 22.19 to 26.23 and the main peak carbon numbers were C16 and C20. Overall, alkanes and olefins in the herbaceous plants showed relatively higher contents of low carbon number components (≤23 for alkanes and <27 for olefins), with an even-to-odd predominance among lower carbon numbers and a significant odd-to-even predominance at higher carbon numbers. Comparative analysis with hot, humid, and drought-prone environments revealed that Festuca brachyphylla Schult. & Schult. f. from the high-altitude, cold, and arid Tianshan Mountains exhibits unique geochemical characteristics, including higher contents of low-carbon alkanes and olefins, lower Average carbon Chain Length (ACL) values, and notable differences in the Odd-Even Predominance (OEP) index between lower- and higher-carbon hydrocarbons. The Average carbon Chain Length of the Olefin (ACLOle) in herbaceous plants with sufficient water supply was relatively long. A strong positive correlation was observed between the Average carbon Chain Lengths of alkanes (ACLAlk) and Olefins (ACLOle) in Festuca brachyphylla Schult. & Schult. f. These results provide insights into the ecological adaptation mechanisms of herbaceous plants in high-altitude, cold, and arid environments and help evaluate the ecological impacts of environmental changes.

参考文献

1 CONTE M H, WEBER J C. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis[J]. Nature2002417: 639-641.
2 LI Jingjing, HUANG Junhua, XIE Shucheng. Plant wax and its response to environmental conditions: an overview[J]. Acta Ecologica Sinica201131(2): 565-574.
  李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系[J]. 生态学报201131(2): 565-574.
3 ZHANG Jie, JIA Guodong. Application of plant-derived n-alkanes and their compound-specific hydrogen isotopic composition in paleoenvironment research[J]. Advances in Earth Science200924(8): 874-881.
  张杰, 贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展200924(8): 874-881.
4 BAKKER M I, BAAS W J, SIJM D T H M, et al. Leaf wax of Lactuca sativa and Plantago major[J]. Phytochemistry199847(8): 1 489-1 493.
5 JETTER R, SCH?FFER S. Chemical composition of the Prunus laurocerasus leaf surface: dynamic changes of the epicuticular wax film during leaf development[J]. Plant Physiology2001126(4): 1 725-1 737.
6 CUI Jingwei, HUANG Junhua, XIE Shucheng. Seasonal changes of n-alkanes and olefins in leaves of modern plants in Qingjiang, Hubei Province[J]. Chinese Science Bulletin200853(11): 1 318-1 323.
  崔景伟, 黄俊华, 谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J]. 科学通报200853(11): 1 318-1 323.
7 LIU Yaxin, GAO Xiaomei, HUANG Mengyue, et al. Research progresses on composition, biosynthesis, and functions in response to outer stresses of plant cuticular wax[J]. Journal of University of Jinan (Science and Technology)202438(1): 101-105.
  刘亚欣, 高小妹, 黄梦月, 等. 植物角质层蜡质组成、生物合成及响应外界胁迫功能研究进展[J]. 济南大学学报(自然科学版)202438(1): 101-105.
8 SUN Fengrui, LI Yumei, CHEN Jianfa, et al. Odd-even preference of n-alkanes in plateau plants and its environmental indication significance[J]. Global Geology201130(3): 469-473.
  孙丰瑞, 李玉梅, 陈践发, 等. 高原植物正构烷烃的奇偶优势及其环境指示意义[J]. 世界地质201130(3): 469-473.
9 Jie OU, WANG Yanhua, YANG Hao, et al. Distribution characteristics of n-alkanes and δ13C in the lake sediments and their environmental significance[J]. Journal of Nanjing Normal University (Natural Science Edition)201235(3): 98-105.
  欧杰, 王延华, 杨浩, 等. 湖泊沉积物中正构烷烃和碳同位素的分布特征及其环境意义[J]. 南京师大学报(自然科学版)201235(3): 98-105.
10 DUAN Yi, ZHAO Yang, WU Yingzhong, et al. Distributions of n-alkanes and their hydrogen isotopic composition in plants from plateau wet region and freshwater lake, China[J]. Journal of China University of Mining & Technology201544(3): 581-589.
  段毅, 赵阳, 吴应忠, 等. 高原潮湿地区植物中正构烷烃及其氢同位素分布[J]. 中国矿业大学学报201544(3): 581-589.
11 EGLINTON T I, BOON J J, MINOR E C, et al. Microscale characterization of algal and related particulate organic matter by direct temperature-resolved mass spectrometry[J]. Marine Chemistry199652(1): 27-54.
12 XIE S, NOTT C J, AVSEJS L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J]. Organic Geochemistry200031(10): 1 053-1 057.
13 XIE S C, YI Y, HUANG J H, et al. Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change[J]. Quaternary Research200360(3): 340-347.
14 PANCOST R D, BAAS M, van GEEL B, et al. Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog[J]. Organic Geochemistry200233(7): 675-690.
15 XIE Shucheng, YI Yi, LIU Yuyan, et al. Response of Pleistocene reticulated laterite in southern China to global climate change: molecular fossil record[J]. Science in China(Series D)200333(5): 411-417.
  谢树成, 易轶, 刘育燕, 等. 中国南方更新世网纹红土对全球气候变化的响应: 分子化石记录[J]. 中国科学(D辑)200333(5): 411-417.
16 LU Bing, ZHOU Huaiyang, CHEN Ronghua, et al. The composition characteristics of n-alkanes in the modern sediments of the Arctic and the comparison with that of sea areas of different latitudes[J]. Chinese Journal of Polar Research200416(4): 281-294.
  卢冰, 周怀阳, 陈荣华, 等. 北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比[J]. 极地研究200416(4): 281-294.
17 ZHANG Z H, ZHAO M X, EGLINTON G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170kyr[J]. Quaternary Science Reviews200625(5/6): 575-594.
18 SCHEFU? E, RATMEYER V, STUUT J W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta200367(10): 1 757-1 767.
19 EGLINTON G, HAMILTON R J. Leaf epicuticular waxes[J]. Science1967156(3 780): 1 322-1 335.
20 DUAN Yi, WU Baoxiang, XU Li, et al. Compositions of n-alkanes and their isotopes in plants from the different latitude regions in China[J]. Acta Geologica Sinica201185(2): 262-271.
  段毅, 吴保祥, 徐丽, 等. 不同纬度地区植物中正构烷烃及其同位素组成[J]. 地质学报201185(2): 262-271.
21 ROMMERSKIRCHEN F, PLADER A, EGLINTON G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes[J]. Organic Geochemistry200637(10): 1 303-1 332.
22 SHI Minrui, HAN Jiamao, ZHOU Liping, et al. Effect of phylogenetic relationships on concentration and distribution of leaf wax n-alkanes[J]. Quaternary Sciences202141(4): 986-999.
  石敏锐, 韩家懋, 周力平, 等. 植物亲缘关系影响植物叶蜡正构烷烃的含量和分布特征[J]. 第四纪研究202141(4): 986-999.
23 FLORIAN D, KATHERINE H F, JENNIFER A M. Leaf wax n-alkane distributions in tropical plants: implications for paleoenvironmental reconstructions[J]. Organic Geochemistry200637(8): 893-903.
24 ZHENG Yanhong, ZHOU Weijian, XIE Shucheng. Distributions of n-alkenes in peat core related to paleoclimate change in Hongyuan peatland[J]. Marine Geology & Quaternary Geology200828(5): 123-128.
  郑艳红, 周卫健, 谢树成. 红原泥炭正构烯烃的分布与古气候意义[J]. 海洋地质与第四纪地质200828(5): 123-128.
25 SACHSE D, RADKE J, GLEIXNER G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient-implications for the sedimentary biomarker record[J]. Organic Geochemistry200637(4): 469-483.
26 FEAKINS S J, SESSIONS A L. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem[J]. Geochimica et Cosmochimica Acta201074(7): 2 128-2 141.
27 CHEN Jingyi, LUO Tao, ZHAN Zhaowen, et al. N-Alkane distribution and hydrogen isotope in lakeside plants from Huguangyan Maar Lake in Zhanjiang, southern China[J]. Geochimica202453(2): 246-256.
  陈静怡, 罗涛, 詹兆文, 等. 湛江湖光岩玛珥湖沿岸植物正构烷烃分布特征及其H同位素组成[J]. 地球化学202453(2): 246-256.
28 BUSH R T, MCINERNEY F A. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta2013117: 161-179.
29 VOGTS A, MOOSSEN H, ROMMERSKIRCHEN F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species[J]. Organic Geochemistry200940(10): 1 037-1 054.
30 GAGOSIAN R B, PELTZER E T. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry198610(4/5/6): 661-669.
31 SIMONEIT B R T, SHENG G Y, CHEN X J, et al. Molecular marker study of extractable organic matter in aerosols from urban areas of China[J]. Atmospheric Environment. Part A. General Topics199125(10): 2 111-2 129.
32 DODD R S, POVEDA M M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis [J]. Biochemical Systematics and Ecology200331(11): 1 257-1 270.
33 MAFFEI M. Chemotaxonomic significance of leaf wax alkanes in the Gramineae[J]. Biochemical Systematics and Ecology199624(1): 53-64.
34 COLLISTER J W, RIELEY G, STERN B, et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Organic Geochemistry199421(6/7): 619-627.
35 RIELEY G, WELKER J M, CALLAGHAN T V, et al. Epicuticular waxes of two Arctic species: compositional differences in relation to winter snow cover[J]. Phytochemistry199538(1): 45-52.
36 DUAN Y, MA L H. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (eastern Qinghai-Tibet Plateau, China)[J]. Organic Geochemistry200132(12): 1 429-1 442.
37 LIU Hu, LIU Weiguo. Relationship of plant leaf wax n-alkanes molecular distribution characteristics and vegetation types[J]. Journal of Earth Environment20156(3): 168-179.
  刘虎, 刘卫国. 植物叶蜡正构烷烃分子分布特征与植被类型的关系[J]. 地球环境学报20156(3): 168-179.
38 ARTECA J M, ARTECA R N. A multi-responsive gene encoding 1-Aminocyclopropane-1-Carboxylate Synthase (ACS6) in mature Arabidopsis leaves[J]. Plant Molecular Biology199939(2): 209-219.
39 CHEN Chen, YANG Kaibo, WANG Kuiping. Effects of different stresses on plant growth and mechanisms of plant resistance to stresses: a review[J]. Jiangsu Agricultural Sciences202452(19): 15-24.
  陈晨, 杨凯波, 王奎萍. 不同胁迫对植物生长发育的影响及植物抗胁迫机制综述[J]. 江苏农业科学202452(19): 15-24.
40 XIE Shucheng, HUANG Junhua, WANG Hongmei, et al. The paleoclimatic significance of fatty acids in stalagmites from Heshang Cave,Qingjiang,Hubei Province [J]. Science in China(Series D)200535(3): 246-251.
  谢树成, 黄俊华, 王红梅, 等. 湖北清江和尚洞石笋脂肪酸的古气候意义[J]. 中国科学(D辑)200535(3): 246-251.
41 SICRE M A, PELTZER E T. Lipid geochemistry of remote aerosols from the southwestern Pacific Ocean sector[J]. Atmospheric Environment200438(11): 1 615-1 624.
文章导航

/