南海西北陆缘多期次海底滑坡的发育特征及形成机理研究
收稿日期: 2025-01-13
修回日期: 2025-02-13
网络出版日期: 2025-05-07
基金资助
中国科学院南海海洋研究所培育项目(SCSIO202206);海南省自然科学基金青年基金项目(425QN503)
Development Characteristics and Formation Mechanism of Multiple Submarine Landslides in the Northwestern Continental Margin of the South China Sea
Received date: 2025-01-13
Revised date: 2025-02-13
Online published: 2025-05-07
Supported by
the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(SCSIO202206);The Youth Fund of the Natural Science Foundation of Hainan Province, China(425QN503)
海底滑坡多是经过漫长的地质作用,在多种因素共同作用下发生的。部分大型海底滑坡呈现多期次滑动,滑动过程复杂,但目前对多期次海底滑坡的发育特征及形成机理的认识还不够明确,这限制了对其发育模式的科学认知。基于高分辨率二维多道地震资料和钻孔数据,在南海西北陆缘开平凹陷识别出6期海底滑坡形成的块体搬运沉积体,根据区域层序地层格架,发现这些块体搬运沉积体主要分布在下韩江组和粤海组地层中,其中块体搬运沉积体1和块体搬运沉积体2发生于16.3~13.8 Ma,块体搬运沉积体3~6形成于10.4~5.3 Ma。地震剖面解释结果表明,块体搬运沉积体1和块体搬运沉积体2内部地质结构变形程度较大,受后期构造活动改造严重,而块体搬运沉积体3~6可识别出后壁和侧壁等典型滑坡特征。通过计算研究区各期块体搬运沉积体发生时的沉积速率,发现低海平面时期的高沉积速率可能为海底滑坡发生提供了重要的先决条件,沉积物快速堆积会使得孔隙流体无法及时排出,从而导致沉积物保持较高的孔隙压力,可能形成不稳定的软弱层,在区域断层活动与地震的触发下发生了多期大规模海底滑坡。
李俊池 , 李伟 , 敬嵩 , 赵璇 , 詹文欢 . 南海西北陆缘多期次海底滑坡的发育特征及形成机理研究[J]. 地球科学进展, 2025 , 40(3) : 315 -330 . DOI: 10.11867/j.issn.1001-8166.2025.021
Submarine landslides are among the most common and destructive geological hazards on continental margins. Their development can significantly reshape seafloor morphology, generate high-density turbidity currents, and even trigger catastrophic tsunamis, posing serious threats to the safety and operation of sub-sea engineering infrastructures. The formation of submarine landslides typically involves long-term geological processes influenced by multiple interacting factors. Some large-scale submarine landslides exhibit multi-stage sliding events with complex movement histories. However, current understanding of the developmental characteristics and formation mechanisms of multi-phase submarine landslides remains limited, which hinders scientific insight into their evolutionary patterns. Based on high-resolution, two-dimensional (2D) multichannel seismic and borehole data, six phases of Mass Transport Deposits (MTDs) resulting from submarine landslides have been identified in the Kaiping Sag on the northwestern continental margin of the South China Sea. According to the established regional sequence stratigraphic framework, these MTDs are mainly concentrated within the Lower Hanjiang Formation and Yuehai Formation. Seismic interpretation results indicate that the internal structure of MTD 1 and 2 is highly deformed and significantly altered by subsequent geological processes, whereas MTD 3 to MTD 6 exhibit typical landslide features such as prominent headwall scarps and lateral margins. Calculation of sedimentation rates during the occurrence of each phase of MTDs reveals that high sedimentation rates occurring during periods of low sea level provided the necessary sediments for the occurrence of landslides. This rapid sediment accumulation likely prevented the timely expulsion of pore fluids, leading to elevated pore pressure within the sediments and the formation of unstable weak layers. In addition, the widespread development of tectonic normal faults (e.g., Shenkai Fault) and their intersecting relationships with all six MTDs strongly suggest that fault activity also played a significant role in triggering these landslides. This study provides new insights into the formation mechanisms of submarine landslides along the northwestern continental margin of the South China Sea, offering important scientific support for hydrocarbon exploration, geological hazard risk assessment, and disaster prevention and mitigation in the region.
1 | HAMPTON M A, LEE H J, LOCAT J. Submarine landslides[J]. Reviews of Geophysics, 1996, 34(1): 33-59. |
2 | SHAN Z G, WU H, NI W D, et al. Recent technological and methodological advances for the investigation of submarine landslides[J]. Journal of Marine Science and Engineering, 2022, 10(11). DOI: 10.3390/jmse10111728 . |
3 | WU N, NUGRAHA H D, ZHONG G F, et al. The role of mass-transport complexes in the initiation and evolution of submarine canyons[J]. Sedimentology, 2022, 69(5): 2 181-2 202. |
4 | GALES J A, MCKAY R M, de SANTIS L, et al. Climate-controlled submarine landslides on the Antarctic continental margin[J]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-38240-y . |
5 | LI W, LI S, ALVES T M, et al. Initiation and evolution of an isolated submarine canyon system on a low-gradient continental slope[J]. Geomorphology, 2023, 434. DOI: 10.1016/j.geomorph.2023.108746 . |
6 | HE Ke, WANG Yufeng, CHENG Qiangong, et al. Research on the substrate entrainment dynamics of rock avalanches: state-of-the-art[J]. Journal of Engineering Geology, 2024, 32(3): 904-917. |
何可, 王玉峰, 程谦恭, 等. 高速远程滑坡底部裹挟机理研究现状及展望[J]. 工程地质学报, 2024, 32(3): 904-917. | |
7 | YIN Yueping, WANG Wenpei, XING Aiguo, et al. Research on dynamic erosion mechanism of submarine landslide: review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 1-15. |
殷跃平, 王文沛, 邢爱国, 等. 海底滑坡动力侵蚀机理研究: 回顾与展望[J]. 中国地质灾害与防治学报, 2025, 36(1): 1-15. | |
8 | HAFLIDASON H, SEJRUP H P, NYG?RD A, et al. The Storegga Slide: architecture, geometry and slide development[J]. Marine Geology, 2004, 213(1/2/3/4): 201-234. |
9 | KRASTEL S, LI W, URLAUB M, et al. Mass wasting along the NW African continental margin[J]. Geological Society, London, Special Publications, 2019, 477(1): 151-167. |
10 | MICALLEF A, MASSON D G, BERNDT C, et al. Development and mass movement processes of the north-eastern Storegga Slide[J]. Quaternary Science Reviews, 2009, 28(5/6): 433-448. |
11 | GEORGIOPOULOU A, MASSON D G, WYNN R B, et al. Sahara Slide: age, initiation, and processes of a giant submarine slide[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(7). DOI: 10.1029/2010GC003066 . |
12 | JING S, ALVES T M, OMOSANYA K O, et al. Long-term slope instability induced by the reactivation of mass transport complexes: an underestimated geohazard on the Norwegian continental margin[J]. Geological Society of America Bulletin, 2023, 136(3). DOI: 10.1130/B36816.1 . |
13 | HU Guanghai, LIU Zhongchen, SUN Yongfu, et al. Advances in the research on sediment failure on submarine slope[J]. Coastal Engineering, 2004, 23(1): 63-72. |
胡光海, 刘忠臣, 孙永福, 等. 海底斜坡土体失稳的研究进展[J]. 海岸工程, 2004, 23(1): 63-72. | |
14 | HU Guanghai, LIU Zhenxia, FANG Junwei. A review of submarine slope stability studies at home and abroad[J]. Advances in Marine Science, 2006, 24(1): 130-136. |
胡光海, 刘振夏, 房俊伟. 国内外海底斜坡稳定性研究概况[J]. 海洋科学进展, 2006, 24(1): 130-136. | |
15 | GUAN Z, CHEN K Y, HE M, et al. Recurrent mass transport deposits and their triggering mechanisms in the Kaiping Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology, 2016, 73: 419-432. |
16 | CHEN H J, ZHAN W H, LI L Q, et al. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea[J]. Journal of Earth System Science, 2017, 126(5). DOI: 10.1007/s12040-017-0844-9 . |
17 | YAO Bochu. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology & Quaternary Geology, 1996, 16(2): 1-13. |
姚伯初. 南海海盆新生代的构造演化史[J]. 海洋地质与第四纪地质, 1996, 16(2): 1-13. | |
18 | REN Jianye, LI Sitian. Spreading and dynamic setting of marginal basins of the western Pacific[J]. Earth Science Frontiers, 2000, 7(3): 203-213. |
任建业, 李思田. 西太平洋边缘海盆地的扩张过程和动力学背景[J]. 地学前缘, 2000, 7(3): 203-213. | |
19 | ZHANG Zhiye, HE Dengfa, LI Zhi, et al. 3D geometry and kinematics of the boundary fault in the Kaiping depression, Pearl River Mouth Basin[J]. Chinese Journal of Geophysics, 2018, 61(10): 4 296-4 307. |
张志业, 何登发, 李智, 等. 珠江口盆地开平凹陷边界断层三维几何学与运动学[J]. 地球物理学报, 2018, 61(10): 4 296-4 307. | |
20 | LUO Donghong, LIANG Wei, LI Xisheng, et al. A breakthrough at Paleogene Enping Formation and its important significance in Lufeng 13-1 oilfield, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(2): 71-75. |
罗东红, 梁卫, 李熙盛, 等. 珠江口盆地陆丰13-1油田古近系恩平组突破及其重要意义[J]. 中国海上油气, 2011, 23(2): 71-75. | |
21 | WANG Shenglan, LIU Hui. Seismic reflection and depositional system of the Enping formation in the Kaiping depression of the Zhujiangkou Basin[J]. Science & Technology Review, 2014, 32(): 64-69. |
王升兰, 刘晖. 珠江口盆地开平凹陷恩平组地震反射特征与沉积体系展布[J]. 科技导报, 2014, 32(): 64-69. | |
22 | XU Changgui, GAO Yangdong, LIU Jun, et al. Discovery of large deep-water and deep-formation oilfield in south Kaiping Sag of Pearl River Mouth Basin and new geological understandings[J]. China Offshore Oil and Gas, 2024, 36(1): 1-13. |
徐长贵, 高阳东, 刘军, 等. 珠江口盆地开平南大型深水深层油田发现与认识创新[J]. 中国海上油气, 2024, 36(1): 1-13. | |
23 | PANG Xiong, HE Min, ZHU Junzhang, et al. A study on development conditions of lacustrine source rocks in Zhu Ⅱ depression, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2009, 21(2): 86-90, 94. |
庞雄, 何敏, 朱俊章, 等. 珠二坳陷湖相烃源岩形成条件分析[J]. 中国海上油气, 2009, 21(2): 86-90, 94. | |
24 | WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea[J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930. |
吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5): 922-930. | |
25 | SUN Qiliang, XIE Xinong, WU Shiguo. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 2021, 28(2): 258-270. |
孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270. | |
26 | XIE X N, MüLLER R D, REN J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144. |
27 | PANG Xiong, CHEN Changmin, PENG Dajun, et al. Basic geology of Baiyun deep-water area in the northern South China Sea[J]. China Offshore Oil and Gas, 2008, 20(4): 215-222. |
庞雄, 陈长民, 彭大钧, 等. 南海北部白云深水区之基础地质[J]. 中国海上油气, 2008, 20(4): 215-222. | |
28 | ZHANG Gongcheng, MI Lijun, WU Shiguo, et al. Deepwater area: the new prospecting targets of northern continental margin of South China Sea[J]. Acta Petrolei Sinica, 2007, 28(2): 15-21. |
张功成, 米立军, 吴时国, 等. 深水区: 南海北部大陆边缘盆地油气勘探新领域[J]. 石油学报, 2007, 28(2): 15-21. | |
29 | ZHU Weilin, ZHONG Kai, LI Youchuan, et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deep-water basins [J]. Chinese Science Bulletin, 2012, 57(20): 1 833-1 841. |
朱伟林, 钟锴, 李友川, 等. 南海北部深水区油气成藏与勘探[J]. 科学通报, 2012, 57(20): 1 833-1 841. | |
30 | NIE Guoquan, HE Dengfa, LI Xiaopan, et al. Tectono-stratigraphic sequence and basin evolution of Kaiping Sag in the Pearl River Mouth Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2020, 55(1): 145-162. |
聂国权, 何登发, 李小盼, 等. 珠江口盆地开平凹陷构造—地层层序与盆地演化[J]. 地质科学, 2020, 55(1): 145-162. | |
31 | WANG Jia, LUAN Xiwu, HE Bingshou, et al. Study on the structural characteristics and dynamic mechanism of faults in the Kaiping Sag of Zhujiang River Mouth Basin[J]. Haiyang Xuebao, 2021, 43(8): 41-53. |
王嘉, 栾锡武, 何兵寿, 等. 珠江口盆地开平凹陷断裂构造特征与动力学机制探讨[J]. 海洋学报, 2021, 43(8): 41-53. | |
32 | LEI Chao, REN Jianye, TONG Dianjun. Geodynamics of the ocean-continent transition zone, northern margin of the South China Sea: implications for the opening of the South China Sea[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 287-1 299. |
雷超, 任建业, 佟殿君. 南海北部洋陆转换带盆地发育动力学机制[J]. 地球物理学报, 2013, 56(4): 1 287-1 299. | |
33 | SUN Zhen, LIU Siqing, PANG Xiong, et al. Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography, 2016, 35(1): 1-16. |
孙珍, 刘思青, 庞雄, 等. 被动大陆边缘伸展—破裂过程研究进展[J]. 热带海洋学报, 2016, 35(1): 1-16. | |
34 | QIN Guoquan. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas, 2002, 14(1): 1-10,18. |
秦国权. 珠江口盆地新生代晚期层序地层划分和海平面变化[J]. 中国海上油气 地质, 2002, 14(1): 1-10,18. | |
35 | DAI Yiding, PANG Xiong, LI Pinglu. Study on hydrocarbon accumulation in Kaiping Sag of Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1998, 10(1): 12-18. |
戴一丁, 庞雄, 李平鲁. 珠江口盆地开平凹陷油气聚集条件分析[J]. 中国海上油气 地质, 1998, 10(1): 12-18. | |
36 | BROWN A R. Interpretation of three-dimensional seismic data[M]. Seventh ed. USA: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2011. |
37 | WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3 184-3 195. |
吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12): 3 184-3 195. | |
38 | LI W, ALVES T M, WU S G, et al. Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea (Qiongdongnan Basin, South Hainan Island)[J]. Marine and Petroleum Geology, 2015, 64: 17-30. |
39 | YU Xinghe, ZHANG Zhijie. Characteristics of Neogene depositional systems on the northern continental slope of the South China Sea and their relationships with gas hydrate[J]. Chinese Geology, 2005, 32(3): 470-476. |
于兴河, 张志杰. 南海北部陆坡区新近系沉积体系特征与天然气水合物分布的关系[J]. 中国地质, 2005, 32(3): 470-476. | |
40 | JIN Lina, YU Xinghe, DONG Yisi, et al. The evolution of Quaternary depositional system in gas hydrate exploration area in Qiongdongnan Basin and its relationship with BSR[J]. Natural Gas Geoscience, 2018, 29(5): 644-654. |
金丽娜, 于兴河, 董亦思, 等. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5): 644-654. | |
41 | BULL S, CARTWRIGHT J, HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1 132-1 151. |
42 | QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152. |
秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1): 140-152. | |
43 | BAI Bo, QIN Zhiliang, YANG Kun, et al. Seismic and geologic comprehensive identification of sea floor gravity decollement structure in Baiyun deep-water zone, Pearl River Mouth Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(2): 219-224. |
白博, 秦志亮, 杨鲲, 等. 珠江口盆地白云深水区海底重力滑脱构造地震地质综合识别[J]. 物探化探计算技术, 2016, 38(2): 219-224. | |
44 | VARNES D J. Slope movement types and processes [J]. Transportation Research Board Special Report, 1978,176: 11-33. |
45 | B?E R, HOVLAND M, INSTANES A, et al. Submarine slide scars and mass movements in Karmsundet and Skudenesfjorden, southwestern Norway: morphology and evolution[J]. Marine Geology, 2000, 167(1/2): 147-165. |
46 | MARTINEZ J F, CARTWRIGHT J, HALL B. 3D seismic interpretation of slump complexes: examples from the continental margin of Israel[J]. Basin Research, 2005, 17(1): 83-108. |
47 | MASELLI V, IACOPINI D, EBINGER C J, et al. Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting[J]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-17267-5 . |
48 | PRIOR D B, BORNHOLD B D, JOHNS M W. Depositional characteristics of a submarine debris flow[J]. The Journal of Geology, 1984, 92(6): 707-727. |
49 | VANNESTE M, MIENERT J, BüNZ S. The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 373-388. |
50 | GAMBERI F, ROVERE M, MARANI M. Mass-transport complex evolution in a tectonically active margin (Gioia Basin, southeastern Tyrrhenian Sea)[J]. Marine Geology, 2011, 279(1/2/3/4): 98-110. |
51 | ORTIZ-KARPF A, HODGSON D M, JACKSON C A L, et al. Mass-transport complexes as markers of deep-water fold-and-thrust belt evolution: insights from the southern Magdalena fan, offshore Colombia[J]. Basin Research, 2016, 30: 65-88. |
52 | POSAMENTIER H W, MARTINSEN O J. The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data [M]// SHIPP R C, WEIMER P, POSAMENTIER H W. USA: Mass-transport deposits in deepwater settings. SEPM Society for Sedimentary Geology, 2011. |
53 | WEI Shanli. “Source-transportation-sink” analysis method and application in continental lacustrine basin sedimentary system based on 2D seismic data: an example from Wenchang Formation of long axis direction, Kaiping Sag, Pearl River Mouth Basin[J]. Fault-Block Oil & Gas Field, 2016, 23(4): 414-418. |
魏山力. 基于地震资料的陆相湖盆“源—渠—汇”沉积体系分析: 以珠江口盆地开平凹陷文昌组长轴沉积体系为例[J]. 断块油气田, 2016, 23(4): 414-418. | |
54 | CHENG Haohao, LI Sanzhong, PENG Guangrong, et al. Eocene “provenance-channel-sink” analysis of Pearl River Mouth Basin: a case study of eastern Yangjiang Sag and Kaiping Sag[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 124-136. |
程昊皞, 李三忠, 彭光荣, 等. 珠江口盆地始新统“源—渠—汇”分析: 以阳江东凹和开平凹陷为例[J]. 海洋地质与第四纪地质, 2022, 42(5): 124-136. | |
55 | ROLAND E, HAEUSSLER P, PARSONS T, et al. Submarine landslide kinematics derived from high-resolution imaging in port valdez, Alaska[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7). DOI: 10.1029/2019JB018007 . |
56 | GEE M J R, GAWTHORPE R L, FRIEDMANN S J. Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology[J]. Journal of Sedimentary Research, 2006, 76(1): 9-19. |
57 | KVALSTAD T J, ANDRESEN L, FORSBERG C F, et al. The Storegga slide: evaluation of triggering sources and slide mechanics[M]// Ormen lange—an integrated study for safe field development in the storegga submarine area. Amsterdam: Elsevier, 2005: 245-256. |
58 | JOANNE C, COLLOT J Y, LAMARCHE G, et al. Continental slope reconstruction after a giant mass failure, the example of the Matakaoa Margin, New Zealand[J]. Marine Geology, 2010, 268(1/2/3/4): 67-84. |
59 | KATZ O, REUVEN E, AHARONOV E. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental-slope[J]. Marine Geology, 2015, 369: 100-115. |
60 | FREY-MARTíNEZ J, CARTWRIGHT J, JAMES D. Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation[J]. Marine and Petroleum Geology, 2006, 23(5): 585-604. |
61 | MOERNAUT J, de BATIST M. Frontal emplacement and mobility of sublacustrine landslides: results from morphometric and seismostratigraphic analysis[J]. Marine Geology, 2011, 285(1/2/3/4): 29-45 |
62 | MASSON D G, HARBITZ C B, WYNN R B, et al. Submarine landslides: processes, triggers and hazard prediction[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1 845): 2 009-2 039. |
63 | L’HEUREUX J S, VANNESTE M, RISE L, et al. Stability, mobility and failure mechanism for landslides at the upper continental slope off Vester?len, Norway[J]. Marine Geology, 2013, 346: 192-207. |
64 | LOCAT J, LEROUEIL S, LOCAT A, et al. Weak layers: their definition and classification from a geotechnical perspective[M]// KRASTEL S, BEHRMANN J H, V?LKER D, et al. Submarine mass movements and their consequences. Cham: Springer International Publishing, 2013: 3-12. |
65 | JOHNSON M R W. Volume balance of erosional loss and sediment deposition related to Himalayan uplifts[J]. Journal of the Geological Society, 1994, 151(2): 217-220. |
66 | HUANG Wei, WANG Pinxian. The statistics of sediment mass in the South China Sea: method and result[J]. Advances in Earth Science, 2006, 21(5): 465-473. |
黄维, 汪品先. 南海沉积物总量的统计: 方法与结果[J]. 地球科学进展, 2006, 21(5): 465-473. | |
67 | LI Yan, WU Nan, HU Shouxiang, et al. Seismic characteristics and triggering mechanism analysis of two types of mass-transport complexes in the southeast of Baiyun Sag, South China Sea[J]. Journal of Tropical Oceanography, 2021, 40(5): 85-100. |
李艳, 吴南, 胡守祥, 等. 南海白云凹陷东南部两种不同类型块体搬运沉积体系的地震响应及成因分析[J]. 热带海洋学报, 2021, 40(5): 85-100. | |
68 | POSAMENTIER H W, ALLEN G P, JAMES D P, et al. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance [J]. AAPG Bulletin, 1992, 76(11): 1687-709. |
69 | SUN Q L, WANG Q, SHI F Y, et al. Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00572-w . |
70 | SULTAN N, JOUET G, RIBOULOT V, et al. Sea-level fluctuations control the distribution of highly liquefaction-prone layers on volcanic-carbonate slopes[J]. Geology, 2023, 51(4): 402-407. |
71 | BROTHERS D S, LUTTRELL K M, CHAYTOR J D. Sea-level-induced seismicity and submarine landslide occurrence[J]. Geology, 2013, 41(9): 979-982. |
72 | SMITH D E, HARRISON S, JORDAN J T. Sea level rise and submarine mass failures on open continental margins[J]. Quaternary Science Reviews, 2013, 82: 93-103. |
73 | LEWIS K B. Slumping on a continental slope inclined at 1°-4°[J]. Sedimentology, 1971, 16(1/2): 97-110. |
74 | BUGGE T, BELDERSON R H, KENYON N H, et al. The Storegga slide [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1997, 325(1 586): 357-88. |
75 | GATTER R, CLARE M A, KUHLMANN J, et al. Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation[J]. Earth-Science Reviews, 2021, 223. DOI: 10.1016/j.earscirev.2021.103845 . |
76 | LIN Y N, SIEH K, STOCK J. Submarine landslides along the malacca strait-mergui basin shelf margin: insights from sequence-stratigraphic analysis[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12). DOI: 10.1029/2009JB007050 . |
77 | NIE Guoquan. Tectonic numerical modeling and genetic mechanism for the continent-ocean transition zone of the passive continental margin: a case study of the Kaiping Sag [D]. Beijing:China University of Geosciences (Beijing), 2017. |
聂国权.被动大陆边缘洋陆过渡带构造数值模拟及成因机制:开平凹陷例析 [D]. 北京:中国地质大学(北京), 2017. | |
78 | LóPEZ C, SPENCE G, HYNDMAN R, et al. Frontal ridge slope failure at the northern Cascadia margin: margin-normal fault and gas hydrate control[J]. Geology, 2010, 38(11): 967-970. |
79 | ROVERE M, GAMBERI F, MERCORELLA A, et al. Geomorphometry of a submarine mass-transport complex and relationships with active faults in a rapidly uplifting margin (Gioia Basin, NE Sicily margin)[J]. Marine Geology, 2014, 356: 31-43. |
80 | YANG Maling, WEI Bailin. The potential seismic tsunami risk in South China Sea and it’s surrounding region[J]. Journal of Catastrophology, 2005, 20(3): 41-47. |
杨马陵, 魏柏林. 南海海域地震海啸潜在危险的探析[J]. 灾害学, 2005, 20(3): 41-47. | |
81 | DAI Yiding, PANG Xiong. Petroleum geological characteristics of Zhu II depression, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1999, 11(3): 169-173. |
代一丁, 庞雄. 珠江口盆地珠二坳陷石油地质特征[J]. 中国海上油气 地质, 1999, 11(3): 169-173. | |
82 | GUO Xiaowen, HE Sheng. Characteristics of source rocks of Enping formation in Panyu lower uplift-Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(1): 31-33, 46, 107. |
郭小文, 何生. 珠江口盆地番禺低隆起—白云凹陷恩平组烃源岩特征[J]. 油气地质与采收率, 2006, 13(1): 31-33, 46, 107. | |
83 | LEE H J. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin[J]. Marine Geology, 2009, 264(1/2): 53-64. |
84 | GAO Weijian, LI Wei. Progress and prospect of seafloor instability research[J]. Strategic Study of CAE, 2023, 25(3): 109-121. |
高伟健, 李伟. 海底不稳定性研究进展及展望[J]. 中国工程科学, 2023, 25(3): 109-121. |
/
〈 |
|
〉 |