南海及周边海上丝绸之路沿线的强灾害性内波
收稿日期: 2025-01-03
修回日期: 2025-02-10
网络出版日期: 2025-05-07
基金资助
国家自然科学基金项目(42130404)
Strong Hazardous Internal Waves in the South China Sea and Along the Maritime Silk Road
Received date: 2025-01-03
Revised date: 2025-02-10
Online published: 2025-05-07
Supported by
the National Natural Science Foundation of China(42130404)
内孤立波作为大振幅强非线性内波,不仅在海洋混合、物质输运和生态系统演变中起着关键作用,还对水下航行安全和海洋工程等构成潜在威胁。因此,深入研究内孤立波的生成、传播及其影响对于海洋环境、水下航行安全至关重要。作为全球重要的海上贸易交通要道,南海(吕宋海峡)及其周边海上丝绸之路沿线海域,如苏禄海(锡布图海峡)、苏拉威西海、龙目海峡和安达曼海等,存在陡峭的水下海脊以及局地潮流较强,是内孤立波频发的海域。通过对卫星遥感、现场观测、数值模拟及地震海洋学等技术手段在这些海域内孤立波研究中的应用进展进行系统综述,揭示了南海及周边海上丝绸之路沿线内孤立波波动特征、生成机制与传播演变规律的区域差异性,并进一步探讨了未来内孤立波研究中一些亟待解决的科学问题(波—流相互作用、多源地内波相干涉现象)与技术难题(数值预报的优化与智能预报的发展)。
龚延昆 , 陈璐 , 孙宇翰 , 许洁馨 , 陈植武 , 蔡树群 . 南海及周边海上丝绸之路沿线的强灾害性内波[J]. 地球科学进展, 2025 , 40(3) : 289 -302 . DOI: 10.11867/j.issn.1001-8166.2025.018
Internal Solitary Waves (ISWs), which are characterized by large amplitudes and strong nonlinearity, are pivotal dynamic phenomena in oceanic processes. These waves contribute significantly to vertical mixing, cross-isopycnal transport of nutrients and sediments, and modulation of marine ecosystems, while posing substantial risks to subsea infrastructures, underwater navigation, and offshore operations. Therefore, a comprehensive understanding of their generation mechanisms, spatiotemporal evolution, and environmental impacts is critical for advancing oceanographic knowledge and ensuring maritime safety. The South China Sea (SCS) and its adjacent regions along the Maritime Silk Road, including the Sulu Sea (Sibutu Passage), Celebes Sea, Lombok Strait, and Andaman Sea, serve as global hotspots for ISW activity because of their complex bathymetry, intense tidal currents, and stratified water columns. This paper synthesizes multidisciplinary advances in ISW research across these regions, leveraging integrated methodologies such as multi-sensor satellite remote sensing (e.g., MODIS, VIIRS, and SAR), in situ observational networks, high-resolution numerical modeling (e.g., MITgcm, FVCOM), and emerging seismic oceanography techniques. Furthermore, the review identifies persistent gaps in knowledge, such as the role of mesoscale and submesoscale processes in wave–current interactions and interference effects between ISWs from multiple sources. Technical challenges, including the assimilation of multi-platform data into predictive models and the development of AI-driven forecast systems (e.g., physics-informed neural networks, convolutional neural networks), are critically assessed. The paper concludes by advocating for coordinated international observational campaigns and next-generation, non-hydrostatic models to unravel the multiscale complexity of ISWs, ultimately enhancing predictive capabilities for scientific and operational applications in these strategic waters.
1 | MUNK W, WUNSCH C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 1 977-2 010. |
2 | GARRETT C, MUNK W. Internal waves in the ocean[J]. Annual Review of Fluid Mechanics, 1979, 11: 339-369. |
3 | BOEGMAN L, STASTNA M. Sediment resuspension and transport by internal solitary waves[J]. Annual Review of Fluid Mechanics, 2019, 51: 129-154. |
4 | GONG Y K, CHEN X E, XU J X, et al. An Internal Solitary Wave Forecasting Model in the Northern South China Sea (ISWFM-NSCS)[J]. Geoscientific Model Development, 2023, 16(10): 2 851-2 871. |
5 | GONG Y K, XIE J S, XU J X, et al. Oceanic internal solitary waves at the Indonesian submarine wreckage site[J]. Acta Oceanologica Sinica, 2022, 41(3): 109-113. |
6 | CAI S Q, XIE J S, HE J L. An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics, 2012, 33(5): 927-943. |
7 | ALFORD M H, PEACOCK T, MACKINNON J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7 550): 65-69. |
8 | GORDON A L, HUBER B A, METZGER E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11). DOI:10.1029/2012GL052021 |
9 | MURRAY S P, ARIEF D. Throughflow into the Indian Ocean through the Lombok Strait, January 1985-January 1986[J]. Nature, 1988, 333: 444-447. |
10 | WU M L, XUE H J, CHAI F. Asymmetric chlorophyll responses enhanced by internal waves near the Dongsha Atoll in the South China Sea[J]. Journal of Oceanology and Limnology, 2023, 41(2): 418-426. |
11 | YADIDYA B, RAO A D. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean Dipole[J]. Scientific Reports, 2022, 12(1). DOI:10.1038/s41598-022-15301-8 . |
12 | YADIDYA B, RAO A D. Projected climate variability of internal waves in the Andaman Sea[J]. Communications Earth & Environment, 2022, 3. DOI:10.1038/s43247-022-00574-8 . |
13 | YANG Y C, HUANG X D, ZHAO W, et al. Kelvin waves from the equatorial Indian Ocean modulate the nonlinear internal waves in the Andaman Sea[J]. Environmental Research Letters, 2023, 18(9). DOI:10.1088/1748-9326/acf05d . |
14 | GUO C, CHEN X. A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography, 2014, 121: 7-23. |
15 | MENG J M, SUN L N, ZHANG H, et al. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND)[J]. Acta Oceanologica Sinica, 2022, 41(10): 154-170. |
16 | ZHANG X J, HUANG X D, ZHANG Z W, et al. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: impacts of seasonal stratification, mesoscale eddies, and internal tides[J]. Journal of Physical Oceanography, 2018, 48(6): 1 349-1 365. |
17 | HUANG X D, CHEN Z H, ZHAO W, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep30041 . |
18 | GONG Y, CHEN X, XU J, et al. ISWFM-NSCS v2.0: advancing the internal solitary wave forecasting model with background currents and horizontally inhomogeneous stratifications[J]. Geoscientific Model Development Discussions, 2024. DOI: 10.5194/gmd-2024-165 . |
19 | LAI Z G, JIN G Z, HUANG Y M, et al. The generation of nonlinear internal waves in the South China Sea: a three-dimensional, nonhydrostatic numerical study[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8 949-8 968. |
20 | JIN G Z, LAI Z G, SHANG X D. Numerical study on the spatial and temporal characteristics of nonlinear internal wave energy in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 178. DOI: 10.1016/j.dsr.2021.103640 . |
21 | RAMP S R, PARK J H, YANG Y J, et al. Latitudinal structure of solitons in the South China Sea[J]. Journal of Physical Oceanography, 2019, 49(7): 1 747-1 767. |
22 | RAMP S R, YANG Y J, CHIU C S, et al. Observations of shoaling internal wave transformation over a gentle slope in the South China Sea[J]. Nonlinear Processes in Geophysics, 2022, 29(3): 279-299. |
23 | CHEN L, ZHENG Q A, XIONG X J, et al. A new type of internal solitary waves with a re-appearance period of 23h observed in the South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(9): 116-118. |
24 | BAI X L, LI X F, LAMB K G, et al. Internal solitary wave reflection near Dongsha Atoll, the South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7 978-7 991. |
25 | XIE J S, HE Y H, CAI S Q. Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4 677-4 695. |
26 | XIE J S, HE Y H, Lü H B, et al. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin[J]. Geophysical Research Letters, 2016, 43(14): 7 617-7 624. |
27 | HUANG X D, ZHANG Z W, ZHANG X J, et al. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations[J]. Journal of Physical Oceanography, 2017, 47(7): 1 539-1 554. |
28 | XU J X, HE Y H, CHEN Z W, et al. Observations of different effects of an anti-cyclonic eddy on internal solitary waves in the South China Sea[J]. Progress in Oceanography, 2020, 188.DOI: 10.1016/j.pocean.2020.102422 . |
29 | HUANG H, SONG P Y, QIU S, et al. A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation[J]. Geoscientific Model Development, 2023, 16(1): 109-133. |
30 | HUANG H, QIU S, ZENG Z, et al. Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon strait[J]. Journal of Physical Oceanography, 2024, 54(10): 2 133-2 152. |
31 | TANG Q S, HOBBS R, WANG D X, et al. Marine seismic observation of internal solitary wave packets in the northeast South China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8 487-8 503. |
32 | TANG Q S, XU M, ZHENG C, et al. A locally generated high-mode nonlinear internal wave detected on the shelf of the northern South China Sea from marine seismic observations[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1 142-1 155. |
33 | SONG H B, GONG Y, YANG S X, et al. Observations of internal structure changes in shoaling internal solitary waves based on seismic oceanography method[J]. Frontiers in Marine Science, 2021, 8. DOI: 10.3389/fmars.2021.733959 . |
34 | MENG L H, SONG H B, GUAN Y X, et al. Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea[J]. Nonlinear Processes in Geophysics, 2024, 31(4): 477-495. |
35 | SONG H B, CHEN J X, PINHEIRO L M, et al. Progress and prospects of seismic oceanography[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177. DOI: 10.1016/j.dsr.2021.103631 . |
36 | ZENG K, ALPERS W. Generation of internal solitary waves in the Sulu Sea and their refraction by bottom topography studied by ERS SAR imagery and a numerical model[J]. International Journal of Remote Sensing, 2004, 25(7/8): 1 277-1 281. |
37 | JACKSON C, ARVELYNA Y, ASANUMA I. High-frequency nonlinear internal waves around the Philippines[J]. Oceanography, 2011, 24(1): 90-99. |
38 | YANG Y Z, SUN M, SUN L N, et al. A characteristics set computation model for internal wavenumber spectra and its validation with MODIS retrieved parameters in the Sulu Sea and Celebes Sea[J]. Remote Sensing, 2022, 14(9). DOI: 10.3390/rs14091967 . |
39 | ZHANG X D, LI X F, ZHANG T. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1 435-1 444. |
40 | HUANG L Y, YANG J S, MA Z T, et al. Generation of diurnal Internal Solitary Waves (ISW-D) in the Sulu Sea: from geostationary orbit satellites and numerical simulations[J]. Progress in Oceanography, 2024, 225. DOI: 10.1016/j.pocean.2024.103279 . |
41 | LIU B Q. Oceanic internal waves in the Sulu-Celebes Sea under sunglint and moonglint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6 119-6 129. |
42 | HUANG L Y, YANG J S, MA Z T, et al. High-frequency observations of oceanic internal waves from geostationary orbit satellites[J]. Ocean-Land-Atmosphere Research, 2023, 2. DOI: 10.34133/olar.0024 . |
43 | APEL J R, HOLBROOK J R, LIU A K, et al. The Sulu Sea internal soliton experiment[J]. Journal of Physical Oceanography, 1985, 15(12): 1 625-1 651. |
44 | ZHAO X Y, XU Z H, FENG M, et al. Satellite investigation of semidiurnal internal tides in the Sulu-Sulawesi seas[J]. Remote Sensing, 2021, 13(13). DOI: 10.3390/rs13132530 . |
45 | LIU A K, HOLBROOK J R, APEL J R. Nonlinear internal wave evolution in the Sulu Sea[J]. Journal of Physical Oceanography, 1985, 15(12): 1 613-1 624. |
46 | TESSLER Z D, GORDON A L, JACKSON C R. Early stage soliton observations in the Sulu Sea[J]. Journal of Physical Oceanography, 2012, 42(8): 1 327-1 336. |
47 | XIE J S, DU H, GONG Y K, et al. The role of seasonal circulation in the variability of dynamic parameters of internal solitary waves in the Sulu Sea[J]. Progress in Oceanography, 2023, 217. DOI: 10.1016/j.pocean.2023.103100 . |
48 | ZHANG X D, LI X F. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2 822-2 832. |
49 | ZHANG X D, ZHANG T, LI X F. Satellite observation of tansmeridional propagating internal waves in the Celebes Sea[C]//IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium. Waikoloa, HI, USA: IEEE, 2020: 6 961-6 964. |
50 | LINDSEY D T, NAM S, MILLER S D. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit[J]. Remote Sensing of Environment, 2018, 208: 202-209. |
51 | HU B L, MENG J M, SUN L N, et al. A study on brightness reversal of internal waves in the Celebes Sea using himawari-8 images[J]. Remote Sensing, 2021, 13(19). DOI:10.3390/rs13193831 . |
52 | DEVANTIER L, ALCALA A, WILKINSON C. The Sulu-Sulawesi Sea: environmental and socioeconomic status, future prognosis and ameliorative policy options[J]. Ambio, 2004, 33(1/2): 88-97. |
53 | XIE Jieshuo, GONG Yankun, NIU Jianwei, et al. Spatial-temporal variations of the dynamic parameters of internal solitary waves in the Sulu-Celebes Sea[J]. Journal of Tropical Oceanography, 2022, 41(6): 132-142. |
谢皆烁, 龚延昆, 牛建伟, 等. 苏禄—苏拉威西海内孤立波动力参数时空变化特征[J]. 热带海洋学报, 2022, 41(6): 132-142. | |
54 | PURWANDANA A, CUYPERS Y, BOURUET-AUBERTOT P. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia[J]. Continental Shelf Research, 2021, 216. DOI: 10.1016/j.csr.2021.104358 . |
55 | CRESSWELL G, TILDESLEY P. RADARSAT scenes of Australia and adjacent waters[C]// Proceedings of the RADARSAT final Symposium, Montreal. 1998. |
56 | MITNIK L, ALPERS W, LIM H. Thermal plumes and internal solitary waves generated in the Lombok Strait studied by ERS SAR[Z]. ERS-Envisat symposium: looking down to Earth in the New Millennium. 2000: 16-20. |
57 | SUSANTO R, MITNIK L, ZHENG Q. Ocean internal waves observed[J]. Oceanography, 2005, 18(4): 80-87. |
58 | MATTHEWS J P, AIKI H, MASUDA S, et al. Monsoon regulation of Lombok strait internal waves[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5).DOI: 10.1029/2010JC006403 . |
59 | ZHUANG C Y, LI X F, SHEN D L, et al. Internal solitary wave in the Lombok strait: satellite-observed spatiotemporal characteristics and their propagations modulated by the Indonesian throughflow[J]. Ocean Modelling, 2024, 190. DOI:10.1016/j.ocemod.2024.102398 . |
60 | SYAMSUDIN F, TANIGUCHI N, ZHANG C Z, et al. Observing internal solitary waves in the Lombok strait by coastal acoustic tomography[J]. Geophysical Research Letters, 2019, 46(17/18): 10 475-10 483. |
61 | AIKI H, MATTHEWS J P, LAMB K G. Modeling and energetics of tidally generated wave trains in the Lombok Strait: impact of the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2011, 116(C3). DOI:10.1029/2010JC006403 . |
62 | HATAYAMA T, AWAJI T, AKITOMO K. Tidal currents in the Indonesian seas and their effect on transport and mixing[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12 353-12 373. |
63 | HENDRAWAN I G, ASAI K. Numerical Study of tidal upwelling over the sill in the Lombok Strait (Indonesia)[C]// ISOPE international ocean and polar engineering conference. ISOPE, 2011: ISOPE-I-11- 131. |
64 | GONG Y K, XIE J S, XU J X, et al. Spatial asymmetry of nonlinear internal waves in the Lombok Strait[J]. Progress in Oceanography, 2022, 202. DOI:10.1016/j.pocean.2022.102759 . |
65 | WANG W, GONG Y, WANG Z, et al. Numerical simulations of generation and propagation of internal tides in the Andaman Sea[J]. Frontiers in Marine Science, 2022, 9. DOI:10.1016/j.pocean.2022.102759 . |
66 | YANG Y C, HUANG X D, ZHAO W, et al. Internal solitary waves in the Andaman Sea revealed by long-term mooring observations[J]. Journal of Physical Oceanography, 2021, 51(12): 3 609-3 627. |
67 | MOHANTY S, RAO A D, LATHA G. Energetics of semidiurnal internal tides in the Andaman Sea[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6 224-6 240. |
68 | PENG S Q, LIAO J W, WANG X W, et al. Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(4). DOI:10.1029/2020JC016521 . |
69 | SUN L N, ZHANG J, MENG J M. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS[J]. Acta Oceanologica Sinica, 2019, 38(7): 121-128. |
70 | MAGALHAES J M, da SILVA J C B. Internal solitary waves in the Andaman Sea: new insights from SAR imagery[J]. Remote Sensing, 2018, 10(6). DOI: 10.3390/rs10060861 . |
71 | YU Y J, XU T, WANG J H, et al. On the generation and evolution of internal solitary waves in the Andaman Sea[J]. Journal of Ocean University of China, 2023, 22(2): 335-348. |
72 | TENSUBAM C M, RAJU N J, DASH M K, et al. Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images[J]. Remote Sensing of Environment, 2021, 252. DOI: 10.1016/j.rse.2020.112123 . |
73 | SUN L N, LIU Y L, MENG J M, et al. Internal solitary waves in the central Andaman Sea observed by combining mooring data and satellite remote sensing[J]. Continental Shelf Research, 2024, 277. DOI: 10.1016/j.csr.2024.105249 . |
74 | CAI S Q, WU Y Q, XU J X, et al. On the generation and propagation of internal solitary waves in the southern Andaman Sea: a numerical study[J]. Science China Earth Sciences, 2021, 64(10): 1 674-1 686. |
75 | LU K X, WANG J, ZHANG M. Study on prediction of internal solitary waves propagation in the southern Andaman Sea[J]. Journal of Oceanography, 2021, 77(4): 607-613. |
76 | ZHANG X D, LI X F, ZHENG Q A. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3 095-3 106. |
77 | CAI S Q, HE Y H, WANG S G, et al. Seasonal upper circulation in the Sulu Sea from satellite altimetry data and a numerical model[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3). DOI: 10.1029/2008JC005109 . |
78 | SONG Q, GORDON A L. Significance of the vertical profile of the Indonesian throughflow transport to the Indian Ocean[J]. Geophysical Research Letters, 2004, 31(16). DOI:10.1029/2004GL020360 . |
79 | LI X F, WANG H Y, YANG Y, et al. Deep learning-based solution for the KdV-family governing equations of ocean internal waves[J]. Ocean Modelling, 2025, 194. DOI: 10.1016/j.ocemod.2024.102493 . |
/
〈 |
|
〉 |