综述与评述

人地系统可持续发展评估模型与情景分析研究进展与展望

  • 张宇冕 ,
  • 张军泽 ,
  • 王帅 ,
  • 傅伯杰
展开
  • 1.北京师范大学 地理科学学部 地表过程与水土风沙灾害风险防控国家重点实验室,北京 100875
    2.中国科学院生态环境研究中心 区域与城市生态安全全国重点实验室,北京 100085
张宇冕,主要从事水土风沙灾害风险防范、可持续发展相关研究. E-mail:202431051026@mail.bnu.edu.cn
张军泽,主要从事人地系统与可持续发展研究. E-mail:zhangjunze427@126.com

收稿日期: 2025-01-05

  修回日期: 2025-02-08

  网络出版日期: 2025-05-07

基金资助

国家重点研发计划项目(2023YFC3804903);国家自然科学基金项目(W2412141)

Progress and Prospects of Research on Assessment Models and Scenario Analysis for Sustainable Development of Human-Earth Systems

  • Yumian ZHANG ,
  • Junze ZHANG ,
  • Shuai WANG ,
  • Bojie FU
Expand
  • 1.State Key Laboratory of Earth Surface Processes and Hazards Risk Governance, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2.State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
ZHANG Yumian, research areas include water and soil erosion disaster risk prevention and sustainable development research. E-mail: 202431051026@mail.bnu.edu.cn
ZHANG Junze, research areas include human-Earth system coupling and sustainable development research. E-mail: zhangjunze427@126.com

Received date: 2025-01-05

  Revised date: 2025-02-08

  Online published: 2025-05-07

Supported by

the National Key Research and Development Program of China(2023YFC3804903);The National Natural Science Foundation of China(W2412141)

摘要

人地系统科学作为可持续发展研究的理论基础,能够通过多维视角、综合理念和系统思维为决策者制定可持续发展路径提供科学支撑,在国家经济、社会和生态文明建设中的重要性日益凸显。人地系统可持续发展评估模型与情景分析技术作为重要的研究工具得到了广泛应用和关注,然而当前研究缺乏关于模型与情景分析技术进展与不足的系统梳理。为紧跟国际前沿,促进国内学者对人地系统建模与决策分析的了解和发展,有必要对目前国际上的相关研究进行进一步系统梳理。采用文献分析与定量分析相结合的方法,总结了模型难以同时支持多个可持续发展目标和在社会维度模拟困难的现状,分析了在系统性变化捕捉、尺度转换、跨学科知识整合、不确定性处理以及数据挖掘与新技术利用方面的挑战;同时总结了情景分析的设置方法、一般类型与情景内容,以及在情景内部冲突、跨尺度链接、与决策相联系方面的局限性,研究结果可以为推动国内学者在该领域的创新发展提供重要参考。

本文引用格式

张宇冕 , 张军泽 , 王帅 , 傅伯杰 . 人地系统可持续发展评估模型与情景分析研究进展与展望[J]. 地球科学进展, 2025 , 40(3) : 255 -270 . DOI: 10.11867/j.issn.1001-8166.2025.019

Abstract

Human-earth system science, as a foundation of sustainable development research, can help decision-makers design sustainable pathways through multidimensional perspectives, integrated concepts, and systematic thinking. It plays an increasingly important role in the construction of national economies, societies, and ecological civilizations. Human-earth system sustainable development assessment models and scenario analysis techniques have become important tools that are widely used and studied. However, current research lacks a summary of the progress and limitations of these models and scenario analysis techniques. To keep pace with international developments and promote the understanding and advancement of human-earth system modeling and decision analysis of Chinese scholars, it is necessary to review the current international research in this field systematically. By combining literature analysis and quantitative analysis, this study summarizes the difficulty of models in simultaneously supporting multiple sustainable development goals and the challenges in simulating the social dimension. We also analyze the challenges in capturing systematic change, scale conversion, interdisciplinary knowledge integration, uncertainty management, data mining, and the use of new technologies. Additionally, we summarize the methods for setting up scenarios, the general types of scenarios, the content of scenarios, the limitations in addressing internal scenario conflict cross-scale linkages, and connections with decision-making. This study provides an important reference for promoting innovative development among Chinese scholars in this field.

参考文献

1 FU Bojie. UN sustainable development goals and historical mission of geography[J]. Science & Technology Review202038(13): 19-24.
  傅伯杰. 联合国可持续发展目标与地理科学的历史任务[J]. 科技导报202038(13): 19-24.
2 LU Dadao. Some key issues concerning development of geographical science in China[J]. Acta Geographica Sinica200358(1): 3-8.
  陆大道. 中国地理学发展若干值得思考的问题[J]. 地理学报200358(1): 3-8.
3 LIU Yansui, LIU Yaqun, Cong OU. Scientific cognition and detection methods of modern human-Earth system[J]. Chinese Science Bulletin202469(3): 447-463.
  刘彦随, 刘亚群, 欧聪. 现代人地系统科学认知与探测方法[J]. 科学通报202469(3): 447-463.
4 LIU Yansui. Modern human-Earth relationship and human-Earth system science[J]. Scientia Geographica Sinica202040(8): 1 221-1 234.
  刘彦随. 现代人地关系与人地系统科学[J]. 地理科学202040(8): 1 221-1 234.
5 ZHANG J Z, WANG S, ZHAO W W, et al. Finding pathways to synergistic development of sustainable development goals in China[J]. Humanities and Social Sciences Communications20229(1). DOI: 10.1057/s41599-022-01036-4 .
6 SOERGEL B, KRIEGLER E, WEINDL I, et al. A sustainable development pathway for climate action within the UN 2030 Agenda[J]. Nature Climate Change202111(8): 656-664.
7 United Nations. The Sustainable Development Goals report 2024 [R]. New York: United Nations, 2024.
8 DONG Wenjie, YUAN Wenping, TENG Fei, et al. Coupling Earth system model and integrated assessment model[J]. Advances in Earth Science201631(12): 1 215-1 219.
  董文杰, 袁文平, 滕飞, 等. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展201631(12): 1 215-1 219.
9 FU Bojie. Geography: from knowledge, science to decision making support[J]. Acta Geographica Sinica201772(11): 1 923-1 932.
  傅伯杰. 地理学: 从知识、科学到决策[J]. 地理学报201772(11): 1 923-1 932.
10 CONNOLLY D, LUND H, MATHIESEN B V, et al. A review of computer tools for analysing the integration of renewable energy into various energy systems[J]. Applied Energy201087(4): 1 059-1 082.
11 DUINKER P N, GREIG L A. Scenario analysis in environmental impact assessment: improving explorations of the future[J]. Environmental Impact Assessment Review200727(3): 206-219.
12 KOSOW H, GA?NER R. Methods of future and scenario analysis: overview, assessment, and selection criteria[M]. DEU2008.
13 ALLEN C, METTERNICHT G, WIEDMANN T. National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools[J]. Environmental Science & Policy201666: 199-207.
14 ELSAWAH S, HAMILTON S H, JAKEMAN A J, et al. Scenario processes for socio-environmental systems analysis of futures: a review of recent efforts and a salient research Agenda for supporting decision making[J]. Science of the Total Environment2020, 729. DOI: 10.1016/j.scitotenv.2020.138393 .
15 GERNAAT D E H J, de BOER H S, DAIOGLOU V, et al. Climate change impacts on renewable energy supply[J]. Nature Climate Change202111: 119-125.
16 BANDARI R, MOALLEMI E A, KHARRAZI A, et al. Transdisciplinary approaches to local sustainability: aligning local governance and navigating spillovers with global action towards the sustainable development goals[J]. Sustainability Science202419(4): 1 293-1 312.
17 BANDARI R, MOALLEMI E A, SZETEY K, et al. Participatory modeling for analyzing interactions between high-priority sustainable development goals to promote local sustainability[J]. Earth’s Future202311(12). DOI: 10.1029/2023EF003948 .
18 MOALLEMI E A, EKER S, GAO L, et al. Early systems change necessary for catalyzing long-term sustainability in a post-2030 Agenda[J]. One Earth20225(7): 792-811.
19 ANDERSON C C, DENICH M, WARCHOLD A, et al. A systems model of SDG target influence on the 2030 Agenda for Sustainable Development[J]. Sustainability Science202217(4): 1 459-1 472.
20 ZHANG J Z, WANG S, PRADHAN P, et al. Untangling the interactions among the Sustainable Development Goals in China[J]. Science Bulletin202267(9): 977-984.
21 CAO M, CHEN M, ZHANG J Z, et al. Spatio-temporal changes in the causal interactions among Sustainable Development Goals in China[J]. Humanities and Social Sciences Communications202310(1). DOI: 10.1057/s41599-023-01952-z .
22 ZHU H S, YUE J C, WANG H. Will China’s urbanization support its carbon peak goal?—A forecast analysis based on the improved GCAM[J]. Ecological Indicators2024, 163. DOI: 10.1016/j.ecolind.2024.112072 .
23 QU W S, SHI W Z, ZHANG J Z, et al. T21 China 2050: a tool for national sustainable development planning[J]. Geography and Sustainability20201(1): 33-46.
24 LUO L, ZHANG J Z, WANG H J, et al. Innovations in Science, Technology, Engineering, And Policy (iSTEP) for addressing environmental issues towards sustainable development[J]. The Innovation Geoscience20242(3). DOI: 10.59717/j.xinn-geo.2024.100087 .
25 CLARK W C, HARLEY A G. Sustainability science: toward a synthesis[J]. Annual Review of Environment and Resources202045: 331-386.
26 FU Bojie, ZHANG Junze. Progress and challenges of Sustainable Development Goals(SDGs) in the world and in China[J]. Bulletin of Chinese Academy of Sciences202439(5): 804-808.
  傅伯杰, 张军泽. 全球及中国可持续发展目标进展与挑战[J]. 中国科学院院刊202439(5): 804-808.
27 ALLEN C, METTERNICHT G, WIEDMANN T. An iterative framework for national scenario modelling for the Sustainable Development Goals (SDGs)[J]. Sustainable Development201725(5): 372-385.
28 United Nations Environment Programme (UNEP). Global environment outlook: environment for development [R]. Nairobi: UNEP, 2007.
29 United Nations Environment Programme (UNEP). Emissions gap report 2019 [R]. Nairobi: UNEP, 2019.
30 LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science2015347(6 225). DOI: 10.1126/science.1258832 .
31 HAK T, JANOUSKOVA S, MOLDAN B. Development goals: a need for relevant indicators[J]. Ecological indicators201660: 565-573.
32 SAHLE M, LAHOTI S A, LEE S Y, et al. Revisiting the sustainability science research agenda[J]. Sustainability Science202520(1): 1-19.
33 FORRESTER J W. Urban dynamics [M]. Cambridge: MIT Press, 1969.
34 SHOVEN J B, WHALLEY J. Applied general-equilibrium models of taxation and international trade: an introduction and survey[J]. Journal of Economic Literature198422(3): 1 007-1 051.
35 van SOEST H L, van VUUREN D P, HILAIRE J, et al. Analysing interactions among sustainable development goals with integrated assessment models[J]. Global Transitions20191: 210-225.
36 BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: towards an integrated modelling approach[J]. Energy Policy201139(12): 7 896-7 906.
37 MO L D, ZOHNER C M, REICH P B, et al. Integrated global assessment of the natural forest carbon potential[J]. Nature2023624(7 990): 92-101.
38 SOERGEL B, KRIEGLER E, BODIRSKY B L, et al. Combining ambitious climate policies with efforts to eradicate poverty[J]. Nature Communications202112(1). DOI: 10.1038/s41467-021-22315-9 .
39 REID W V, CHEN D, GOLDFARB L, et al. Earth system science for global sustainability: grand challenges[J]. Science2010330(6 006): 916-917.
40 PURVIS B, MAO Y, ROBINSON D. A multi-scale integrated assessment model to support urban sustainability[J]. Sustainability Science202217(1): 151-169.
41 SALVIA A L, LEAL F W, BRANDLI L L, et al. Assessing research trends related to sustainable development goals: local and global issues[J]. Journal of Cleaner Production2019208: 841-849.
42 LI K, GAO L, GUO Z X, et al. Safeguarding China’s long-term sustainability against systemic disruptors[J]. Nature Communications202415(1). DOI: 10.1038/s41467-024-49725-9 .
43 HUGHES B B. International Futures (IFs) and integrated, long-term forecasting of global transformations[J]. Futures201681: 98-118.
44 Earth4All. SDGs for all: strategic scenarios Earth4All system dynamics modelling of SDG progress[R]. Earth4All, 2024.
45 van VUUREN D P, KOK M, LUCAS P L, et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model[J]. Technological Forecasting and Social Change201598: 303-323.
46 LUCAS P L, HILDERINK H B M, JANSSEN P H M, et al. Future impacts of environmental factors on achieving the SDG target on child mortality: a synergistic assessment[J]. Global Environmental Change2019, 57. DOI: 10.1016/j.gloenvcha.2019.05.009 .
47 NGUYEN T B, WAGNER F, SCHOEPP W. EC4MACS—an integrated assessment toolbox of well-established modeling tools to explore the synergies and interactions between climate change, air quality and other policy objectives[M]. Berlin, Heidelberg: Springer, 2012.
48 GUO J H, HEPBURN C J, TOL R S J, et al. Discounting and the social cost of carbon: a closer look at uncertainty[J]. Environmental Science & Policy20069(3): 205-216.
49 QU W S, BARNEY G O, SYMALLA D, et al. Threshold 21: national sustainable development model[J]. Integrated Global Models of Sustainable Development19952: 78-87.
50 ORBONS K, van VUUREN D P, AMBROSIO G, et al. A review of existing model-based scenarios achieving SDGs: progress and challenges[J]. Global Sustainability2024, 7. DOI: 10.1017/sus.2023.20 .
51 CHEN M, QIAN Z, BOERS N, et al. Collaboration between artificial intelligence and Earth science communities for mutual benefit[J]. Nature Geoscience202417: 949-952.
52 LOZANO F J, SUáREZ-SEOANE S, KELLY M, et al. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: a case study in a mountainous Mediterranean region[J]. Remote Sensing of Environment2008112(3): 708-719.
53 FILATOVA T, POLHILL J G, van EWIJK S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches[J]. Environmental Modelling & Software201675: 333-347.
54 de HAAN F J, ROTMANS J. A proposed theoretical framework for actors in transformative change[J]. Technological Forecasting and Social Change2018128: 275-286.
55 DRESSLER G, GROENEVELD J, HETZER J, et al. Upscaling in socio-environmental systems modelling: current challenges, promising strategies and insights from ecology[J]. Socio-Environmental Systems Modelling2022, 4. DOI: 10.18174/sesmo.18112 .
56 CONTRERAS D, GUIOT J, SUAREZ R, et al. Reaching the human scale: a spatial and temporal downscaling approach to the archaeological implications of paleoclimate data[J]. Journal of Archaeological Science201893: 54-67.
57 PEDERCINI M, ARQUITT S, COLLSTE D, et al. Harvesting synergy from sustainable development goal interactions[J]. Proceedings of the National Academy of Sciences of the United States of America2019116(46): 23 021-23 028.
58 ELSAWAH S, FILATOVA T, JAKEMAN A J, et al. Eight grand challenges in socio-environmental systems modeling[J]. Socio-Environmental Systems Modelling2020, 2. DOI: 10.18174/sesmo.1811 .
59 SAREWITZ D. How science makes environmental controversies worse[J]. Environmental Science & Policy20047(5): 385-403.
60 KETTNER A J, SYVITSKI J P M. Uncertainty and sensitivity in surface dynamics modeling[J]. Computers & Geosciences201690: 1-5.
61 DELETIC A, DOTTO C B S, MCCARTHY D T, et al. Assessing uncertainties in urban drainage models[J]. Physics and Chemistry of the Earth, Parts A/B/C201242: 3-10.
62 SUN Z H, SANDOVAL L, CRYSTAL-ORNELAS R, et al. A review of Earth artificial intelligence[J]. Computers & Geosciences2022, 159. DOI: 10.1016/j.cageo.2022.105034 .
63 European Environment Agency. Scenarios as tools for international environmental assessments[R]. Copenhagen: European Environment Agency, 2001.
64 van VUUREN D P, KOK M T J, GIROD B, et al. Scenarios in global environmental assessments: key characteristics and lessons for future use[J]. Global Environmental Change201222(4): 884-895.
65 HICHERT T, BIGGS R, de VOS A, et al. Scenario development [M]// BIGGS R, de VOS A, PREISER R, et al. The routledge handbook of research methods for social-ecological systems. London: Routledge, 2021.
66 WESCHE S D, ARMITAGE D R. Using qualitative scenarios to understand regional environmental change in the Canadian North[J]. Regional Environmental Change201414(3): 1 095-1 108.
67 LI X, ZHANG F, HUI E C, et al. Collaborative workshop and community participation: a new approach to urban regeneration in China[J]. Cities2020, 102. DOI: 10.1016/j.cities.2020.102743 .
68 KEYS P W, WANG-ERLANDSSON L, MOORE M L, et al. The dry sky: future scenarios for humanity’s modification of the atmospheric water cycle[J]. Global Sustainability2024, 7. DOI: 10.1017/sus.2024.9 .
69 BENTZ J, O’BRIEN K, SCOVILLE-SIMONDS M. Beyond “blah blah blah”: exploring the “how” of transformation[J]. Sustainability Science202217(2): 497-506.
70 O’NEILL B C, KRIEGLER E, EBI K L, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change201742: 169-180.
71 GALLOPIN G C, HAMMOND A, RASKIN P, et al. Branch points: global scenarios and human choice[R]. Stockholm: Stockholm Environment Institute, 1997.
72 RIAHI K, van VUUREN D P, KRIEGLER E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change201742: 153-168.
73 FRICKO O, HAVLIK P, ROGELJ J, et al. The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century[J]. Global Environmental Change201742: 251-267.
74 CARLSEN H, TALEBIAN S, PEDDE S, et al. Diversity in global environmental scenario sets[J]. Global Environmental Change2024, 86. DOI: 10.1016/j.gloenvcha.2024.102839 .
75 ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change20188: 325-332.
76 HARRISS R. Review of journey to earthland: the great transition to planetary civilization[J]. Environment: Science and Policy for Sustainable Development201759(3). DOI: 10.1080/00139157.2017.1301169 .
77 MCKIBBEN B. Deep economy: the wealth of communities and the durable future[M]. New York: Times Books, 2007.
78 SMITH A. An inquiry into the nature and causes of the wealth of nations [M]. London: W. Strahan and T. Cadell, 1776.
79 WU Jinglian. China’s economic reform process[M]. 2nd ed. Beijing: Encyclopedia of China Publishing House, 2023.
  吴敬琏. 中国经济改革进程[M]. 2版. 北京: 中国大百科全书出版社, 2023.
80 ELECTRIS C, RASKIN P, ROSEN R, et al. The century ahead: four global scenarios[M]. Boston: Tellus Institute, 2009.
81 RASKIN P D, ELECTRIS C, ROSEN R A. The century ahead: searching for sustainability[J]. Sustainability20102(8): 2 626-2 651.
82 RASKIN P D. World lines: a framework for exploring global pathways[J]. Ecological Economics200865(3): 461-470.
83 MAIER H R, GUILLAUME J H A, van DELDEN H, et al. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together?[J]. Environmental Modelling & Software201681: 154-164.
84 VOLKERY A, RIBEIRO T, HENRICHS T, et al. Your vision or my model? Lessons from participatory land use scenario development on a European scale[J]. Systemic Practice and Action Research200821(6): 459-477.
85 LIPPE M, BITHELL M, GOTTS N, et al. Using agent-based modelling to simulate social-ecological systems across scales[J]. GeoInformatica201923(2): 269-298.
86 CHERMACK T J. Improving decision-making with scenario planning[J]. Futures200436(3): 295-309.
87 POVITKINA M, CARLSSON J S, MATTI S, et al. Why are carbon Taxes unfair?Disentangling public perceptions of fairness[J]. Global Environmental Change2021, 70. DOI: 10.1016/j.gloenvcha.2021.102356 .
88 HE X B, ZHAI F, MA J. An analysis of the IMF’s international carbon price floor[J]. Journal of Globalization and Development202415(2): 95-112.
89 DILLION D, TANDON N, GU Y L, et al. Can AI language models replace human participants?[J]. Trends in Cognitive Sciences202327(7): 597-600.
文章导航

/