大气海洋

中国地球气候系统模式在CMIP6中的影响力分析及CMIP7概况

  • 李宸昊 ,
  • 梁文钧 ,
  • 胡辉 ,
  • 董文杰 ,
  • 吕建华
展开
  • 1.中山大学 大气科学学院,广东 珠海 519082
    2.南方海洋科学与工程广东省 实验室(珠海),广东 珠海 519082
李宸昊,主要从事气候变化及模式评估工作. E-mail:lichh8@mail2.sysu.edu.cn

收稿日期: 2024-09-18

  修回日期: 2024-12-27

  网络出版日期: 2025-04-17

基金资助

国家自然科学基金项目(U21A6001)

Influence Analysis of Chinese Earth & Climate System Model in CMIP6 and Overview of CMIP7

  • Chenhao LI ,
  • Wenjun LIANG ,
  • Hui HU ,
  • Wenjie DONG ,
  • LüJianhua
Expand
  • 1.School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China
    2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Guangdong 519082, China
LI Chenhao, research areas include climate change and evaluation of Earth & climate models. E-mail: lichh8@mail2.sysu.edu.cn

Received date: 2024-09-18

  Revised date: 2024-12-27

  Online published: 2025-04-17

Supported by

the National Natural Science Foundation of China(U21A6001)

摘要

随着气候危机日益严峻,地球气候系统模式作为预估和应对未来气候变化的关键数值模拟工具,其重要性愈发凸显。耦合模式比较计划旨在推动模式发展并深化对地球气候系统的科学认知,已成为国际间模式交流与应用的核心平台。概述了中国参与第六次国际耦合模式比较计划的情况,并统计分析了中国地球气候系统模式在第六次国际耦合模式比较计划相关研究中的被引用情况、研究概况及特点。结果发现,中国模式应用广泛,影响力较大,但缺乏高被引的成果,需要整合资源集中发展代表模式。此外,简要介绍了正在筹备中的第七次国际耦合模式比较计划,并总结了中国在模式发展方面所面临的机遇与挑战。中国模式应用前景广阔,但仍有提升空间,应继续加大研发投入,保持国际竞争力,为继续深度参与全球气候变化治理做好准备。

本文引用格式

李宸昊 , 梁文钧 , 胡辉 , 董文杰 , 吕建华 . 中国地球气候系统模式在CMIP6中的影响力分析及CMIP7概况[J]. 地球科学进展, 2025 , 40(2) : 155 -168 . DOI: 10.11867/j.issn.1001-8166.2025.010

Abstract

As the climate crisis intensifies, Earth system models have become increasingly significant as critical numerical simulation tools for evaluating and addressing future climate change. The Coupled Model Intercomparison Project (CMIP), aimed at promoting model development and deepening the scientific understanding of the Earth's climate system, has become a central platform for international model exchange and application. This paper provides an overview of China’s participation in the Sixth Phase of CMIP (CMIP6), including a statistical analysis of citations, research trends, and key characteristics of the Chinese Earth system models in CMIP6-related studies. In addition, the Seventh Coupled Model Intercomparison Project (CMIP7), which is currently under preparation, is briefly introduced, and the opportunities and challenges faced by China in model development are summarized. Through continuous technological innovation, international cooperation, and exchanges, Chinese scientists are expected to make greater breakthroughs in the field of Earth and Climate System Models and contribute to Chinese wisdom and solutions for global climate change response and governance.

参考文献

1 ZHOU Tianjun, CHEN Ziming, ZOU Liwei, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica202078(3): 332-350.
  周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报202078(3): 332-350.
2 WANG Bin, ZHOU Tianjun, YU Yongqiang. A perspective on earth system model development[J]. Acta Meteorologica Sinica200866(6): 857-869.
  王斌,周天军,俞永强. 地球系统模式发展展望[J].气象学报200866(6): 857-869.
3 National Academies of Sciences, Engineering, and Medicine. A national strategy for advancing climate modeling [M]. Washington, D.C.: The National Academies Press, 2012.
4 Office Met. Weather and climate science and services in a changing world [R/OL]. [2024-01-02]. .
5 DURACK P J, TAYLOR K E, MIZIELINSKI M, et al. CMIP6 Controlled Vocabularies (CVs) (6.2.58.73) [DB]. Zenodo, 2024.
6 WU T W, YU R C, LU Y X, et al. BCC-CSM2-HR: a high-resolution version of the Beijing climate center climate system model[J]. Geoscientific Model Development202114(5): 2 977-3 006.
7 WU T W, LU Y X, FANG Y J, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development201912(4): 1 573-1 600.
8 WU T W, ZHANG F, ZHANG J, et al. Beijing Climate Center Earth System Model Version 1 (BCC-ESM1): model description and evaluation of aerosol simulations[J]. Geoscientific Model Development202013(3): 977-1 005.
9 JI D, WANG L, FENG J, et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geoscientific Model Development20147(5): 2 039-2 064.
10 RONG Xinyao, LI Jian, CHEN Haoming, et al. Introduction of CAMS-CSM model and its participation in CMIP6[J]. Climate Change Research201915(5): 540-544.
  容新尧, 李建, 陈昊明, 等. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展201915(5): 540-544.
11 ZHANG H, ZHANG M H, JIN J B, et al. Description and climate simulation performance of CAS-ESM version 2[J]. Journal of Advances in Modeling Earth Systems202012(12). DOI:10.1029/2020MS002210 .
12 LIN Y L, HUANG X M, LIANG Y S, et al. Community Integrated Earth System Model (CIESM): description and evaluation[J]. Journal of Advances in Modeling Earth Systems202012(8). DOI:10.1029/2019MS002036 .
13 BAO Q, LIU Y M, WU G X, et al. CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6[J]. Atmospheric and Oceanic Science Letters202013(6): 576-581.
14 HE B, BAO Q, WANG X C, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation[J]. Advances in Atmospheric Sciences201936(8): 771-778.
15 LI L J, LIN P F, YU Y Q, et al. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2[J]. Advances in Atmospheric Sciences201330(3): 543-560.
16 BAO Y, SONG Z Y, QIAO F L. FIO-ESM version 2.0: model description and evaluation[J]. Journal of Geophysical Research: Oceans2020125(6). DOI:10.1029/2019JC016036 .
17 CAO Jian, MA Libin, LI Juan, et al. Introduction of NUIST-ESM model and its CMIP6 activities[J]. Advances in Climate Change Research201915(5): 566-570.
  曹剑,马利斌, 李娟,等. NUIST-ESM模式及其参与CMIP6的方案. 气候变化研究进展201915(5): 566-570.
18 LEE W L, WANG Y C, SHIU C J, et al. Taiwan Earth system model version 1: description and evaluation of mean state[J]. Geoscientific Model Development202013(9): 3 887-3 904.
19 ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research201915(5): 445-456.
  周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展201915(5): 445-456.
20 NIE S P, FU S W, CAO W H, et al. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model[J]. Theoretical and Applied Climatology2020140(1): 487-502.
21 LI J D, MIAO C Y, WEI W, et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979-2014[J]. Journal of Advances in Modeling Earth Systems202113(6). DOI:10.1029/2021MS002515 .
22 HAYASHI M, SHIOGAMA H, OGURA T. The contribution of climate change to increasing extreme ocean warming around Japan[J]. Geophysical Research Letters202249(19). DOI: 10.1029/2022GL100785 .
23 CHEN Yue, CHEN Chaomei, LIU Zeyuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science201533(2): 242-253.
  陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究201533(2): 242-253.
24 CAI W J, NG B, WANG G J, et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios[J]. Nature Climate Change202212: 228-231.
25 PLANTON Y Y, GUILYARDI E, WITTENBERG A T, et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package[J]. Bulletin of the American Meteorological Society2021102(2): E193-E217.
26 HIRABAYASHI Y, TANOUE M, SASAKI O, et al. Global exposure to flooding from the new CMIP6 climate model projections[J]. Scientific Reports202111(1). DOI:10.1038/s41598-021-83279-w .
27 IYAKAREMYE V, ZENG G, YANG X Y, et al. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century[J]. Science of the Total Environment2021, 790. DOI: 10.1016/j.scitotenv.2021.148162 .
28 MONDAL S K, HUANG J L, WANG Y J, et al. Doubling of the population exposed to drought over south Asia: CMIP6 multi-model-based analysis[J]. Science of the Total Environment2021, 771. DOI: 10.1016/j.scitotenv.2021.145186 .
29 CHIANG F, MAZDIYASNI O, AGHAKOUCHAK A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity[J]. Nature Communications202112(1). DOI:10.1038/s41467-021-22314-w .
30 DONG S Y, SUN Y, LI C, et al. Attribution of extreme precipitation with updated observations and CMIP6 simulations[J]. Journal of Climate34(3): 871-881.
31 TURNOCK S T, ALLEN R J, ANDREWS M, et al. Historical and future changes in air pollutants from CMIP6 models[J]. Atmospheric Chemistry and Physics202020(23): 14 547-14 579.
32 SHI X D, WANG J W, ZHANG L, et al. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model[J]. Ecological Indicators2023, 148. DOI:10.1016/j.ecolind.2023.110093 .
33 XIN X G, WU T W, ZHANG J, et al. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. International Journal of Climatology202040(15): 6 423-6 440.
34 ZHENG Y Q, CHEN S F, CHEN W, et al. A continuing increase of the impact of the spring north Pacific meridional mode on the following winter El Ni?o and Southern Oscillation[J]. Journal of Climate202336(2): 585-602.
35 YAZDANDOOST F, MORADIAN S, IZADI A, et al. Evaluation of CMIP6 precipitation simulations across different climatic zones: uncertainty and model intercomparison[J]. Atmospheric Research2021, 250. DOI:10.1016/j.atmosres.2020.105369 .
36 TRAN T N D, DO S K, NGUYEN B Q, et al. Investigating the future flood and drought shifts in the transboundary srepok river basin using CMIP6 projections[C]// IEEE journal of selected topics in applied earth observations and remote sensing. IEEE, 2024: 7 516-7 529.
37 XIN X G, WU T W, ZHENG M Z, et al. Decadal prediction of Northeast Asian winter precipitation with CMIP6 models[J]. Climate Dynamics202462(5): 3 245-3 259.
38 ZHAO C B, LI Q Q, NIE Y, et al. The reversal of surface air temperature anomalies in China between early and late winter 2021/2022: observations and predictions[J]. Advances in Climate Change Research202314(5): 660-670.
39 AL-YAARI A, ZHAO Y, CHERUY F, et al. Heatwave characteristics in the recent climate and at different global warming levels: a multimodel analysis at the global scale[J]. Earth’s Future202311(9). DOI: 10.1029/2022EF003301 .
40 PAIK S, MIN S K, ZHANG X B, et al. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation[J]. Geophysical Research Letters202047(12). DOI: 10.1029/2019GL086875 .
41 DONG B W, SUTTON R T, SHAFFREY L, et al. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions[J]. Nature Communications202213(1). DOI:10.1038/s41467-022-28816-5 .
42 FANG Y J, WU T W, HU A X, et al. A modified thermodynamic sea ice model and its application[J]. Ocean Modelling2022, 178. DOI:10.1016/j.ocemod.2022.102096 .
43 MUILWIJK M, NUMMELIN A, HEUZé C, et al. Divergence in climate model projections of future Arctic atlantification[J]. Journal of Climate202336(6): 1 727-1 748.
44 HEUZé C, LIU H L. No emergence of deep convection in the Arctic ocean across CMIP6 models[J]. Geophysical Research Letters202451(4). DOI: 10.5194/egusphere-egu24-3080 .
45 DING Yihui, LIU Yanju, XU Ying, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science202338(6): 551-562.
  丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候 “暖湿化” 趋势、成因及预估研究进展与展望[J]. 地球科学进展202338(6): 551-562.
46 DUNNE J P, HEWITT H T, ARBLASTER J, et al. An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and fast track in support of future climate assessment[J]. EGUsphere2024. DOI:10.5194/egusphere-2024-3874 .
47 ROBERTS M J, REED K A, BAO Q, et al. High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7[J]. Geoscientific Model Development202518(4): 1 307-1 332.
48 SANDERSON B M, BOOTH B B B, DUNNE J, et al. The need for carbon emissions-driven climate projections in CMIP7[J]. EGUsphere202417(22): 8 141-8 172.
49 WANG Huijun, XU Yongfu, ZHOU Tianjun, et al. Atmospheric science: a vigorous frontier science[J]. Advances in Earth Science200419(4): 525-532.
  王会军,徐永福,周天军, 等. 大气科学:一个充满活力的前沿科学[J]. 地球科学进展200419(4): 525-532.
50 WANG Bin, ZHOU Tianjun, YU Yongqiang, et al. A perspective on Earth system model development[J]. Acta Meteorologica Sinica200866(6): 857-869.
  王斌, 周天军, 俞永强, 等. 地球系统模式发展展望[J]. 气象学报200866(6): 857-869.
51 ZHOU Tianjun, ZOU Liwei, WU Bo, et al. Development of earth/climate system models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Journal of Meteorological Research201472(5): 892-907.
  周天军,邹立维,吴波,等. 中国地球气候系统模式研究进展:计划实施近20年回顾[J]. 气象学报201472(5): 892-907.
52 ZHOU Tianjun, ZHANG Wenxia, CHEN Deliang, et al. Understanding and building upon the pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: from the greenhouse effect to Earth system science and beyond[J]. Science China Earth Sciences202252(4): 579-594.
  周天军,张文霞,陈德亮,等. 2021年诺贝尔物理学奖解读:从温室效应到地球系统科学[J].中国科学:地球科学202252(4):579-594.
53 ZHOU Guangqing, ZHANG Yunquan, JIANG Jinrong, et al. Earth system model: CAS-ESM[J]. Frontiers of Data & Computing20202(1): 38-54.
  周广庆,张云泉,姜金荣,等. 地球系统模式CAS-ESM[J]. 数据与计算发展前沿20202(1): 38-54.
文章导航

/