多年冻土区热喀斯特湖水—热—碳循环过程研究进展
收稿日期: 2024-11-14
修回日期: 2024-12-30
网络出版日期: 2025-03-24
基金资助
甘肃省杰出青年基金项目(25JRRA489);甘肃省教育厅高校科研创新平台重大培育项目(2024CXPT-14)
Advances in the Study of Water, Heat, and Carbon Cycling Dynamics in Thermokarst Lakes of Permafrost
Received date: 2024-11-14
Revised date: 2024-12-30
Online published: 2025-03-24
Supported by
Science Fund for Distinguished Young Scholars of Gansu Province(25JRRA489);Department of Education of Gansu Province: Major Cultivation Project of Scientific Research Innovation Platform in University(2024CXPT-14)
热喀斯特湖作为多年冻土响应气候变暖最显著的冰冻圈地貌之一,其形成演化过程深刻影响着生态环境变化、区域水文循环及生物地球化学过程,并危害冻土工程稳定性。通过综述北半球多年冻土区热喀斯特湖形成演化、水文循环、热量迁移及生态环境效应和工程影响的研究进展,发现在环北极不连续多年冻土区,多数区域的湖塘面积呈减少趋势;在连续多年冻土区,湖塘面积的增加和减少均有发生,而青藏高原区域气候暖湿化导致热喀斯特湖快速形成和扩张。同时,热喀斯特湖演化耦合水文循环过程及产生的热效应会改变周围土壤理化性质,影响高寒生态系统的水热过程,并降低毗邻冻土工程的稳定性。热喀斯特湖发育加速多年冻土碳库分解,释放CO2、CH4和N2O等温室气体,并反馈于气候变化系统。目前,热喀斯特湖“水—热—碳”循环过程及环境效应是国际冻土研究的热点议题之一。未来需综合考虑人类活动及气候变化的协同作用,并基于热喀斯特湖水—热—碳循环耦合过程,发展高精度陆面过程模型,研究变化环境下多年冻土区生态环境演替、水资源变化及碳循环等问题,推动冰冻圈科学发展。
陈梦佳 , 白炜 , 张成铭 , 刘文艳 , 高泽永 . 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025 , 40(1) : 82 -98 . DOI: 10.11867/j.issn.1001-8166.2025.007
As one of the most significant cryospheric landforms that respond to climate warming in permafrost regions, thermokarst lakes profoundly influence ecological changes, regional hydrological cycles, and biogeochemical processes while compromising the stability of permafrost engineering. This study reviews recent advances in the formation and evolution of thermokarst lakes, their hydrological cycles, heat transfer, ecological and environmental effects, and engineering impacts across northern hemisphere permafrost regions. Research indicates that in the discontinuous permafrost zones of the Arctic, lake and pond areas show a predominantly decreasing trend, whereas, in continuous permafrost zones, both expansion and shrinkage are observed. On the Qinghai-Tibet Plateau, climate warming and increased precipitation have led to the rapid formation and expansion of thermokarst lakes. The evolution of these lakes, coupled with hydrological cycling and thermal effects, alters the physicochemical properties of the surrounding soils, influences hydrothermal dynamics in alpine ecosystems, and reduces the stability of adjacent permafrost engineering structures. Furthermore, the development of thermokarst lakes accelerates the decomposition of permafrost carbon stocks, releasing greenhouse gases such as CO2, CH4, and N2O, which further feedback into the climate system. Currently, coupled water-heat-carbon cycling processes and their environmental implications represent a key research focus in permafrost science. Future studies should comprehensively consider the interactive effects of climate change and human activities and, based on coupled water-heat-carbon cycling processes, develop high-precision land surface process models to investigate ecological succession, water resource dynamics, and carbon cycling in permafrost regions under changing environmental conditions, thereby advancing cryospheric science.
Key words: Northern Hemisphere; Thermokarst lakes; Permafrost; Carbon cycle; Climate change
1 | van EVERDINGEN R O. Multi-language glossary of permafrost and related ground-ice terms[R]. International Permafrost Association, 1998. |
2 | CHENG Guodong, ZHAO Lin. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2000, 20(6): 521-531. |
程国栋, 赵林. 青藏高原开发中的冻土问题[J]. 第四纪研究, 2000, 20(6): 521-531. | |
3 | MU C, ABBOTT B W, NORRIS A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211. DOI: 10.1016/j.earscirev.2020.103433 . |
4 | OBU J, WESTERMANN S, BARTSCH A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316. |
5 | PENG Xiaoqing, TIAN Weiwei, LI Xuanjia, et al. Research progress on changes in frozen ground on the Qinghai-Tibet Plateau and in the circum-Arctic region[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 521-534. |
彭小清, 田伟伟, 李璇佳, 等. 青藏高原和环北极冻土变化研究进展[J]. 冰川冻土, 2023, 45(2): 521-534. | |
6 | STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013. |
7 | SCHELLNHUBER H J, CRAMER W, NAKICENOVIC N, et al. Avoiding dangerous climate change[M]. Cambridge: Cambridge University Press, 2006. |
8 | JONES B M, GROSSE G, ARP C D, et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116(G2). DOI:10.1029/2011jg001666 . |
9 | GROSSE G, ROMANOVSKY V, WALTER K, et al. Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia [C]// Proceedings of the ninth international conference on permafrost. Davos, Switzerland: A.A. PublishersBalkema,2008: 551-556. |
10 | MU Mei, MU Cuicui, LIU Hebin, et al. Spatial distribution and methane emission potentiality from thermokarst lakes in the northem hemisphere [J]. Journal of Glaciology and Geocryology, 2023, 45(2): 535-547. |
母梅, 牟翠翠, 刘和斌, 等. 北半球热融湖塘分布及其甲烷排放潜力 [J]. 冰川冻土, 2023, 45(2): 535-547. | |
11 | WEI Z, DU Z, WANG L, et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau[J]. Earth and Space Science, 2021, 8(11). DOI:10.1029/2021ea001950 . |
12 | SERIKOVA S, POKROVSKY O S, LAUDON H, et al. High carbon emissions from thermokarst lakes of Western Siberia[J]. Nature Communications, 2019, 10(1). DOI: 10.1038/s41467-019-09592-1 . |
13 | WALTER K M, EDWARDS M E, GROSSE G, et al. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation[J]. Science, 2007, 318(5 850): 633-636. |
14 | NITZE I, GROSSE G, JONES B M, et al. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic[J]. Nature Communications, 2018, 9(1). DOI: 10.1038/s41467-018-07663-3 . |
15 | YI S, WISCHNEWSKI K, LANGER M, et al. Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes[J]. Geoscientific Model Development, 2014, 7(4): 1 671-1 689. |
16 | SERREZE M C, WALSH J E, CHAPIN F S, et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climatic change, 2000, 46: 159-207. |
17 | LIN Z J, NIU F J, FANG J H, et al. Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau[J]. Geomorphology, 2017, 276: 16-26. |
18 | FERNáNDEZ-FERNáNDEZ J M, OLIVA M, RIBOLINI A, et al. Cryosphere degradation in a changing climate[J]. Land Degradation & Development, 2024, 35(15): 4 359-4 363. |
19 | CHADBURN S E, BURKE E J, COX P M, et al. An observation-based constraint on permafrost loss as a function of global warming[J]. Nature Climate Change, 2017, 7(5): 340-344. |
20 | MU Cuicui, ZHANG Guofei, XIAO Cunde, et al. Interpretation of the IPCC sixth assessment report: permafrost changes and their impacts[J]. Journal of Glaciology and Geocryology, 2023,45(2): 306-317. |
牟翠翠, 张国飞, 效存德, 等. IPCC第六次评估报告解读:多年冻土变化及其影响[J].冰川冻土, 2023,45(2): 306-317. | |
21 | SMITH S L, O’NEILL H B, ISAKSEN K, et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment, 2022, 3(1): 10-23. |
22 | JORGENSON M T, OSTERKAMP T E. Response of boreal ecosystems to varying modes of permafrost degradation[J]. Canadian Journal of Forest Research, 2005, 35(9): 2 100-2 111. |
23 | WANG C, WANG Z, KONG Y, et al. Most of the northern hemisphere permafrost remains under climate change[J]. Scientific reports, 2019, 9(1). DOI: 10.1038/s41598-019-39942-4 . |
24 | ZOU D, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2 527-2 542. |
25 | ZHANG Y, LIU F, WANG X, et al. Field investigation on thermal regime of permafrost and talik in a river terrace, the interior of Qinghai‐Tibet Plateau[J]. Geofluids, 2022, 2022(1). DOI: 10.1155/2022/1160531 . |
26 | JIN H J, HE R, CHENG G, et al. Change in frozen ground and eco-environmental impacts in the Sources Area of the Yellow River (SAYR) on the northeastern Qinghai-Tibet Plateau, China[J]. Environmental Research Letters, 2009, 4. DOI: 10.1088/1748-9326/4/045206 . |
27 | CHENG G, WU T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2006JF000631 . |
28 | ZHANG Z, WU Q, JIANG G, et al. Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2020, 169. DOI: 10.1016/j.coldregions.2019.102904 . |
29 | ZHAO L, ZOU D, HU G, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 31(3): 396-405. |
30 | ZHANG G, NAN Z, HU N, et al. Qinghai‐Tibet Plateau permafrost at risk in the late 21st century[J]. Earth’s Future, 2022, 10(6). DOI: 10.1029/2022EF002652 . |
31 | WU Qingbai, ZHANG Zhongqiong, LIU Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet plateau[J]. Journal of Engineering Geology, 29(2): 342-352. |
吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29(2): 342-352. | |
32 | MUSTER S, ROTH K, LANGER M, et al. PeRL: a circum-Arctic permafrost region pond and lake database[J]. Earth System Science Data, 2017, 9(1): 317-348. |
33 | SMITH L C, SHENG Y, MACDONALD G M, et al. Disappearing Arctic Lakes[J]. Science, 2005, 308(5 727): 1 429. |
34 | ZHOU G, LIU W, XIE C, et al. Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau[J]. Scientific Reports, 2024, 14(1). DOI: 10.1038/s41598-024-52558-7 . |
35 | LUO J, NIU F, LIN Z, et al. Abrupt increase in thermokarst lakes on the central Tibetan Plateau over the last 50 years[J]. Catena, 2022, 217. DOI:10.1016/j.catena.2022.106497 . |
36 | van HUISSTEDEN J, DOLMAN A J. Soil carbon in the Arctic and the permafrost carbon feedback[J]. Current Opinion in Environmental Sustainability, 2012, 4(5): 545-551. |
37 | ROMANOVSKII N N, HUBBERTEN H W, GAVRILOV A V, et al. Permafrost of the east Siberian Arctic shelf and coastal lowlands[J]. Quaternary Science Reviews, 2004, 23(11/13): 1 359-1 369. |
38 | BOUCHARD F, MACDONALD L A, TUNNERK W, et al. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution[J]. Arctic Scienc,2017, 3(2): 91-117. |
39 | CZUDEK T, DEMEK J. Thermokarst in Siberia and its influence on the development of lowland relief[J]. Quaternary Research, 1970, 1(1): 103-120. |
40 | LUOTO M, SEPP?L? M. Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland[J]. Permafrost and Periglacial Processes, 2003, 14(1): 19-27. |
41 | CALMELS F, ALLARD M, DELISLE G. Development and decay of a lithalsa in northern Québec: a geomorphological history[J]. Geomorphology, 2008, 97(3/4): 287-299. |
42 | NIU F, LIU M, CHENG G, et al. Long-term thermal regimes of the Qinghai-Tibet railway embankments in plateau permafrost regions[J]. Science China Earth Sciences, 2015, 58(9): 1 669-1 676. |
43 | FRENCH H M. The periglacial environment [M]. Hoboken: John Wiley & Sons, 2017: 182-185. |
44 | MACDONALD L A, TURNER K W, BALASUBRAMANIAM A M, et al. Tracking hydrological responses of a thermokarst lake in the Old Crow Flats (Yukon Territory, Canada) to recent climate variability using aerial photographs and paleolimnological methods[J]. Hydrological Processes, 2012, 26(1): 117-129. |
45 | MORGENSTERN A, GROSSE G, GüNTHER F, et al. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta[J]. The Cryosphere, 2011, 5(4): 849-867. |
46 | MU Cuicui. Thermokarst terrains change landscape and Earth surface processes[J]. Chinese Journal of Nature, 2020, 42(5):386-392. |
牟翠翠. 热喀斯特改变多年冻土区景观和地表过程[J]. 自然杂志, 2020, 42(5): 386-392. | |
47 | WANG H, LIU H, NI W. Factors influencing thermokarst lake development in Beiluhe basin, the Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2017, 76(24): 1-15. |
48 | PAYETTE S, DELWAIDE A, CACCIANIGA M, et al. Accelerated thawing of subarctic peatland permafrost over the last 50 years[J]. Geophysical Research Letters,2004,31(18): 1-4. |
49 | LANTZ T C, TURNER K W. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(3): 513-524. |
50 | TURNER K W, WOLFE B B, EDWARDS T W D. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers[J]. Journal of Hydrology, 2010, 386(1/4): 103-117. |
51 | RIORDAN B, VERBYLA D, MCGUIRE A D. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G4). DOI:10.1029/2005JG000150 . |
52 | YOSHIKAWA K, HINZMAN L D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska[J]. Permafrost and Periglacial Processes, 2003, 14(2): 151-160. |
53 | BOUCHARD F, TURNER K W, MACDONALD L A, et al. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low[J]. Geophysical Research Letters, 2013, 40(23): 6 112-6 117. |
54 | JORGENSON M T, SHUR Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2006jf000531 . |
55 | LUO Jing, NIU Fujun, LIN Zhanju, et al. Permafrost features around a representative thermokarst lake in Beiluhe on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1 110-1 117. |
罗京,牛富俊,林战举,等. 青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究[J]. 冰川冻土, 2012, 34(5): 1 110-1 117. | |
56 | HUANG W, ZHANG J, LEPP?RANTA M, et al. Thermal structure and water-ice heat transfer in a shallow ice-covered thermokarst lake in central Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2019, 578. DOI: 10.1016/j.jhydrol.2019.124122 . |
57 | KE Xianmin, Anfeng OU, WANG Wei, et al. Interaction of thermokarst lake and permafrost in Qinghai-Tibet Plateau[J]. Advances in Water Science, 2022, 33(4): 542-552. |
柯贤敏,欧安锋,王玮,等. 青藏高原热喀斯特湖与多年冻土的相互作用[J]. 水科学进展, 2022, 33(4): 542-552. | |
58 | LIN Zhanju, NIU Fujun, LUO Jing, et al. Thermal regime at bottom of thermokarst lakes along Qinghai-Tibet engineering corridor[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(1): 179-188. |
林战举, 牛富俊, 罗京, 等. 青藏工程走廊热融湖湖底热状态[J]. 地球科学(中国地质大学学报), 2015, 40(1): 179-188. | |
59 | NIU Fujun, DONG Cheng, LIN Zhanju, et al. Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet highway[J]. Advances in Earth Science, 2013, 28(6): 695-702. |
牛富俊, 董晟, 林战举, 等. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702. | |
60 | FANG Jianhong, XU Anhua, YANG Yuzhong, et al. Hydrological changes of thermokarst lake on the Qinghai-Tibet Plateau and implications for the engineering constructions[J]. Journal of Capital Normal University (Natural Science Edition), 2019, 40(3): 54-60. |
房建宏, 徐安花, 杨玉忠, 等. 青藏高原热融湖塘水文变化及其工程指示意义[J]. 首都师范大学学报(自然科学版), 2019, 40(3): 54-60. | |
61 | KOKELJ S V, JORGENSON M T. Advances in thermokarst research[J]. Permafrost and Periglacial Processes, 2013, 24(2): 108-119. |
62 | CUI Wei, LIU Chengkun, KANG Jianlin. Development and evolution of permafrost impacted by thermokarst lake[J]. Forestry Construction, 2014(1): 58-62. |
崔巍, 刘成昆, 康建林. 热融湖塘对多年冻土发展演化趋势的影响[J]. 林业建设, 2014(1): 58-62. | |
63 | YANG Zhen, WEN Zhi, MA Wei, et al. Numerical simulation on the dynamic evolution process of thermokarst lake based on the moving mesh technology[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 183-191. |
杨振, 温智, 马巍, 等. 基于移动网格技术的热融湖动态演化过程数值模拟[J]. 冰川冻土, 2015, 37(1): 183-191. | |
64 | HU Xiaoying, SHENG Yu, WU Jichun, et al.Hydrothermal processes of thermokarst ponds in the Tibetan Plateau and its thermal impact on the underlying permafrost[J]. Journal of Lake Sciences, 2018, 30(3): 825-835. |
胡晓莹, 盛煜, 吴吉春, 等. 青藏高原热融湖塘的水热过程及其对下伏多年冻土的热影响[J]. 湖泊科学, 2018, 30(3): 825-835. | |
65 | BENSE V F, FERGUSON G, KOOI H. Evolution of shallow groundwater flow systems in areas of degrading permafrost[J]. Geophysical Research Letters, 2009, 36(22). DOI: 10.1029/2009GL039225 . |
66 | BENSE V F, KOOI H, FERGUSON G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3). DOI: 10.1029/2011JF002143 . |
67 | ROMANOVSKY V E, OSTERKAMP T E. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost[J]. Permafrost and Periglacial Processes, 2000, 11(3): 219-239. |
68 | PELLETIER J D. Formation of oriented thaw lakes by thaw slumping[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2). DOI:10.1029/2004JF000158 . |
69 | MATELL N, ANDERSON R S, OVEREEM I, et al. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate[J]. Computers & Geosciences, 2013, 53: 69-79. |
70 | PLUG L J, WEST J J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement[J]. Journal of Geophysical Research, 2009, 114(F1). DOI:10.1029/2006jf000740 . |
71 | LI S, ZHAN H, LAI Y, et al. The coupled moisture‐heat process of permafrost around a thermokarst pond in Qinghai‐Tibet Plateau under global warming[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(4): 836-853. |
72 | WEN Z, YANG Z, YU Q, et al. Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method[J]. Cold Regions Science and Technology, 2016, 121: 84-92. |
73 | LING Feng, ZHANG Tingjun. Progress in numerical simulation of long-term impact of thermokarst lakes on permafrost thermal regime[J]. Advances in Earth Science, 2018, 33(2): 115-130. |
令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130. | |
74 | WILCOX E J, WOLFE B B, MARSH P. Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, northwest Territories, Canada[J]. Hydrology and Earth System Science, 2023, 27(11): 2 173-2 188. |
75 | YANG Y, WU Q, HOU Y, et al. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique[J]. Science of the Total Environment, 2017, 605/606: 199-210. |
76 | GAO Z, NIU F, LIN Z, et al. Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers[J]. Science of the Total Environment, 2018, 636: 1-11. |
77 | KE X, LI Y, WANG W, et al. Hydrogeochemical characteristics and processes of thermokarst lake and groundwater during the melting of the active layer in a permafrost region of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2022, 851. DOI: 1016/j.scitotenv.2022.158183 . |
78 | MANASYPOV R M, LIM A G, KRICKOV I V, et al. Carbon storage and burial in thermokarst lakes of permafrost peatlands[J]. Biogeochemistry, 2022, 159(1): 69-86. |
79 | KONG Detao. Study on the permeability of sediment and the relationship between lake water and groundwater transformation in lake chigast [D]. Xi’an: Chang’an University, 2020. |
孔德涛.热喀斯特湖沉积物渗透性能及湖水—地下水转化关系研究[D]. 西安: 长安大学, 2020. | |
80 | CHAI Mingtang, MA Wei, MU Yanhu. Distribution and engineering effect of supra-permafrost groundwater: review and prospect[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1 794-1 808. |
柴明堂,马巍,穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1 794-1 808. | |
81 | FEDOROV A N, GAVRILIEV P P, KONSTANTINOV P Y, et al. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia[J]. Ecohydrology, 2014, 7(2): 188-196. |
82 | GUO Shuhai, CHEN Rensheng, HAN Chuntan, et al. Advances in the measurement and calculation results and influencing factors of the sublimation of ice and snow[J]. Advances in Earth Science, 2017, 32(11): 1 204-1 217. |
郭淑海, 陈仁升, 韩春坛, 等. 冰雪升华测算结果及影响因素研究进展[J]. 地球科学进展, 2017, 32(11): 1 204-1 217. | |
83 | GAO Zeyong, NIU Fujun, WANG Yibo, et al. Hydrological characteristics of thermokarst lake and its environmental effects on Qinghai-Tibet Plateau[J]. Advances in Water Science, 2022, 33(2): 174-184. |
高泽永, 牛富俊, 王一博, 等. 青藏高原多年冻土区热喀斯特湖水文特征及环境效应[J]. 水科学进展, 2022, 33(2): 174-184. | |
84 | ZHAO Lin, HU Guojie, ZOU Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 233-1 246. |
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1 233-1 246. | |
85 | YANG Y, WU Q, YUN H, et al. Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes[J]. Global and Planetary Change, 2016, 140: 1-8. |
86 | WANG Yuhan, YANG Dawen, LEI Huimin, et al. Impact of cryosphere hydrological processes on the river runoff in the upper reaches of Heihe River[J]. Journal of Hydraulic Engineering, 2015, 46(9): 1 064-1 071. |
王宇涵, 杨大文, 雷慧闽, 等. 冰冻圈水文过程对黑河上游径流的影响分析[J]. 水利学报, 2015, 46(9): 1 064-1 071. | |
87 | LAMONTAGNE-HALLE P, MCKENZIE J M, KURYLYK B L, et al. Changing groundwater discharge dynamics in permafrost regions[J]. Environmental Research Letters, 2018, 13(8). DOI: 10.1088/1748-9326/aad404 . |
88 | ZHU X, WU T, HU G, et al. Long‐distance atmospheric moisture dominates water budget in permafrost regions of the Central Qinghai-Tibet Plateau[J]. Hydrological Processes, 2020, 34(22): 4 280-4 294. |
89 | GAO Z, NIU F, WANG Y, et al. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2017, 574: 751-759. |
90 | REN Z, LI X, ZHANG C, et al. From permafrost soil to thermokarst lake sediment: a view from C∶N∶P stoichiometry[J]. Frontiers in Environmental Science, 2022, 10. DOI: 10.3389/fenvs.2022.986879 . |
91 | WANG Yibo, GAO Zeyong, WEN Jing, et al. Effect of a thermokarst lake on soil physical properties and infiltration processes in the permafrost region of the Qinghai-Tibet Plateau, China[J]. Science China: Earth Sciences, 2014, 57: 2 357-2 365. |
王一博, 高泽永, 文晶, 等. 青藏高原多年冻土区热融湖塘对土壤物理特性及入渗过程的影响[J]. 中国科学: 地球科学, 2014, 44(10): 2 285-2 293. | |
92 | WANG Yibo, Mingxia Lü, ZHAO Haipeng, et al. Analysis on soil water infiltration characteristics and mechanism in active layer in permafrost area of the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1 301-1 311. |
王一博, 吕明侠, 赵海鹏, 等. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1 301-1 311. | |
93 | XU Q, DU Z, WANG L, et al. The role of thermokarst lake expansion in altering the microbial community and methane cycling in Beiluhe basin on Tibetan Plateau[J]. Microorganisms, 2022, 10(8). DOI: 10.3390/microorganisms10081620 . |
94 | NIU Fujun, WANG Wei, LIN Zhanju, et al. Study on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2018, 33(4): 335-342. |
牛富俊, 王玮, 林战举, 等. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342. | |
95 | SUN Zhizhong, LIU Minghao, WU Guilong, et al. Characteristics of permafrost under a nonpenerative thermokarst lake in Beiluhe basin on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2012, 34(1): 37-42. |
孙志忠, 刘明浩, 武贵龙, 等. 非贯穿型热喀斯特湖下部及其周围多年冻土特征[J]. 冰川冻土, 2012, 34(1): 37-42. | |
96 | BOWDEN W B. Climate change in the Arctic-permafrost, thermokarst, and why they matter to the non‐Arctic world[J]. Geography Compass, 2010, 4(10): 1 553-1 566. |
97 | GAO Zeyong. Effect of thermokarst lake on soil hydrological processes in the permafrost regions of Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2015. |
高泽永. 青藏高原多年冻土区热融湖塘对土壤水文过程的影响[D]. 兰州: 兰州大学, 2015. | |
98 | GAO Zeyong, WANG Yibo, LIU Guohua.Effect of thermokarst lake on soil saturated hydraulic conductivity and analysis of its influenced factors[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 109-117. |
高泽永, 王一博, 刘国华. 热融湖塘对青藏高原土壤饱和导水率的影响及因素分析[J]. 农业工程学报, 2014, 30(20): 109-117. | |
99 | WANG Y, WU Q, TIAN L, et al. Correlation of alpine vegetation degradation and soil nutrient status of permafrost in the source regions of the Yangtze River, China[J]. Environmental Earth Sciences, 2012, 67(4): 1 215-1 223. |
100 | ABBOTT B W, LAROUCHE J R, JONES J B, et al. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(10): 2 049-2 063. |
101 | DENG Y, LI X, SHI F, et al. Nonlinear effects of thermokarst lakes on peripheral vegetation greenness across the Qinghai-Tibet Plateau using stable isotopes and satellite detection[J]. Remote Sensing of Environment, 2022, 280. DOI: 10.1016/j.rse.2022.113215 . |
102 | CHEN Y, LIU A, CHENG X. Vegetation grows more luxuriantly in Arctic permafrost drained lake basins[J]. Global Change Biology, 2021, 27(22): 5 865-5 876. |
103 | LUO J, NIU F, LIN Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60(5): 556-564. |
104 | WANG Yibo, WU Qingbai, NIU Fujun. The impact of thermokarst lake formation on soil environment of alpine meadow in permafrost regions in the Beiluhe Basin of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 659-667. |
王一博, 吴青柏, 牛富俊. 长江源北麓河流域多年冻土区热融湖塘形成对高寒草甸土壤环境的影响[J]. 冰川冻土, 2011, 33(3): 659-667. | |
105 | MANASYPOV R M, VOROBYEV S N, LOIKO S V, et al. Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia[J]. Biogeosciences, 2015, 12(10): 3 009-3 028. |
106 | ALA-AHO P, SOULSBY C, POKROVSKY O S, et al. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high latitude wetland and permafrost influenced landscape[J]. Journal of Hydrology (Amsterdam), 2018, 556: 279-293. |
107 | ZABELINA S A, SHIROKOVA L S, KLIMOV S I, et al. Carbon emission from thermokarst lakes in NE European tundra[J]. Limnology and Oceanography, 2021, 66(): S216-S230. |
108 | WEI Z, DU Z, WANG L, et al. Sedimentary organic carbon storage of thermokarst lakes and ponds across Tibetan permafrost region[J]. Science of the Total Environment, 2022, 831. DOI: 10.1016/j.scitotenv.2022.154761 . |
109 | IN’T ZANDT M H, LIEBNER S, WELTE C U. Roles of thermokarst lakes in a warming world. [J]. Trends in Microbiology, 2020, 28(9):769-779. |
110 | ROSSI P G, LAURION I, LOVEYOY C. Distribution and identity of bacteria in subarctic permafrost thaw ponds[J]. Aquatic Microbial Ecology, 2013, 69(3): 231-245. |
111 | DESHPANDE B N, MAPS F, MATVEEV A, et al. Oxygen depletion in subarctic peatland thaw lakes[J]. Arctic Science, 2017, 3(2): 406-428. |
112 | DESHPANDE B N, MACINTYRE S, MATVEEV A, et al. Oxygen dynamics in permafrost thaw lakes: anaerobic bioreactors in the Canadian subarctic[J]. Limnology and Oceanography, 2015, 60(5): 1 656-1 670. |
113 | WALTER K M, ZIMOV S A, CHANTON J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006, 443(7 107): 71-75. |
114 | WALTER A K, DAANEN R, ANTHONY P, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s[J]. Nature Geoscience, 2016, 9(9): 679-682. |
115 | KYZIVAT E D, SMITH L C. A closer look at the effects of lake area, aquatic vegetation, and double‐counted wetlands on Pan‐Arctic Lake methane emissions estimates[J]. Geophysical Research Letters, 2023, 50(24). DOI:10.1029/2023GL104825 . |
116 | ZIMOV S A, VOROPAEV Y V, SEMILETOV I P, et al. North Siberian Lakes: a methane source fueled by Pleistocene carbon[J]. Science, 1997, 277(5 327): 800-802. |
117 | WIK M, VARNER R K, ANTHONY K W, et al. Climate-sensitive northern lakes and ponds are critical components of methane release[J]. Nature Geoscience, 2016, 9(2): 99-105. |
118 | MU C, ZHANG T, WU Q, et al. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau[J]. Journal of Limnology, 2016, 75(2). DOI:10.4081/jlimnol.2016.1346 . |
119 | KOVEN C D, SCHUUR E A, SCHADEL C, et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2 054). DOI:10.1098/rsta.2014.0423 . |
120 | GAO Z, NIU F, LIN Z. Effects of permafrost degradation on thermokarst lake hydrochemistry in the Qinghai-Tibet Plateau, China[J]. Hydrological Processes, 2020, 34(26): 5 659-5 673. |
121 | YANG M, WANG X, PANG G, et al. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 2019, 190: 353-369. |
122 | XU Q, DU Z, WANG L, et al. Temperature sensitivity of methanogenesis and anaerobic methane oxidation in thermokarst lakes modulated by surrounding vegetation on the Qinghai-Tibet Plateau[J]. Science of the Total Environment,2024, 907. DOI: 10.1016/j.scitotenv.2023.167962 . |
123 | MU C, MU M, WU X, et al. High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau[J]. Global Change Biology, 2023, 29(10): 2 732-2 745. |
124 | WU Q, ZHANG P, JIANG G, et al. Bubble emissions from thermokarst lakes in the Qinghai-Xizang Plateau[J]. Quaternary International, 2014, 321: 65-70. |
125 | VONK J E, TANK S E, BOWDEN W B, et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems[J]. Biogeosciences, 2015, 12(23): 7 129-7 167. |
126 | MA X, LIU G, WU X, et al. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2018, 630: 314-322. |
127 | LAMMERS J M, SCHUBERT C J, MIDDELBURG J J, et al. Microbial carbon processing in oligotrophic Lake Lucerne (Switzerland): results of in situ 13C-labelling studies[J]. Biogeochemistry, 2017, 136: 131-149. |
128 | WEN Z, ZHELEZNIAK M, WANG D, et al. Thermal interaction between a thermokarst lake and a nearby embankment in permafrost regions[J]. Cold Regions Science and Technology, 2018, 155: 214-224. |
129 | LIN Zhanju, NIU Fujun, LIU Hua, et al. Numerical simulation of lateral thermal process of a thaw lake and its influence on permafrost engineering on Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1 394-1 402. |
林战举, 牛富俊, 刘华, 等. 青藏高原热融湖对冻土工程影响的数值模拟[J]. 岩土工程学报, 2012, 34(8): 1 394-1 402. | |
130 | DING Z, NIU F, MU Y, et al. Primarily investigation with multiple methods on permafrost state around a rapid change lake in the interior of the Tibet Plateau[J]. Environmental Research Letters, 2023, 18(11). DOI:10.1088/1748-9326/ad0063 . |
131 | PENG E, SHENG Y, HU X, et al. Thermal effect of thermokarst lake on the permafrost under embankment[J]. Advances in Climate Change Research, 2021, 12(1): 76-82. |
132 | LIU Z, WANG S, JIANG Z, et al. Study on the coupling thermal effect of thermokarst lake and high sunny slope on permafrost embankment[J]. Transportation Geotechnics, 2023, 41. DOI:10.1016/j.trgeo.2023.101024 . |
133 | CHAI M, LUO Y, GAO Y, et al. Seepage influence of supra-permafrost groundwater on thermal field of embankment on Qinghai-Tibet Plateau, China[J]. Research in Cold and Arid Regions, 2023, 15(3): 132-140. |
134 | LI Yongqiang, LIU Gang, QIAN Guohua, et al. The harmful geological phenomenon in permafrost area and its harm to railway engineering [J]. Journal of Engineering Geology, 2002, 10(): 202-206. |
李永强, 刘钢, 钱国华, 等. 多年冻土区不良冻土地质现象及其对铁路工程的危害[J]. 工程地质学报, 2002, 10(): 202-206. | |
135 | NIU F, LUO J, LIN Z, et al. Development and thermal regime of a thaw slump in the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2012, 83/84: 131-138. |
136 | LUO J, NIU F, LIN Z, et al. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe region[J]. Geomorphology, 2019, 341: 79-85. |
137 | WANG Liping, CHU Xiao, BAI Fengpo. The problems to destroy geology of subgrade in frost area[J]. Northeast Highway Journal, 2000(1): 22-23. |
王丽平, 初晓, 柏凤坡. 冰缘地区破坏路基的环境地质问题[J]. 东北公路, 2000(1): 22-23. | |
138 | 中华人民共和国第十四届全国人民代表大会常务委员会. 中华人民共和国青藏高原生态保护法[Z/OL]. (2023-04-26)[2024-01-15]. . |
/
〈 |
|
〉 |