收稿日期: 2024-06-18
修回日期: 2024-09-14
网络出版日期: 2025-02-28
基金资助
中国科学院空天信息创新研究院科学与颠覆性技术项目(E2Z20201)
Progress and Future Perspectives of Earth Observation from Deep Space: The Case of DSCOVR
Received date: 2024-06-18
Revised date: 2024-09-14
Online published: 2025-02-28
Supported by
the Science and Disruptive Technology Program, the Aerospace Information Research Institute (AIR) of the Chinese Academy of Sciences(E2Z20201)
深空探测作为人类探索宇宙奥秘和推动可持续发展的关键途径,已成为空间技术领域最活跃的战略前沿。经过数十年的发展,该技术已广泛应用于太阳系内各类天体的探测。2015年2月,首个以地球为目标的深空探测卫星——深空气象观测卫星(DSCOVR),在日地拉格朗日1点(L1)成功部署,为地球系统科学研究提供了新的视角和数据,同时也对传统卫星数据研究提出了新的挑战。综合分析了自深空气象观测卫星发射以来,美国国家航空航天局官方网站发布的100余篇相关论文和会议总结,从基础研究、应用研究到特色研究3个层面,对深空对地观测的发展现状、优势、未来发展及科学意义进行了综述。研究发现,深空气象观测卫星融合极轨—静止卫星具有高时频、全球覆盖的优势,可为多源数据联合使用提供基准,在多圈层宏观地球科学现象研究中潜力巨大,未来有望通过革新传感器、优化探测技术、丰富观测点位,实现全时相、全方位和全维度地球观测,助力全面认识地球系统变化规律。
关键词: 深空探测; 遥感; 对地观测; 深空气象观测卫星(DSCOVR); 地表圈层
宋婉娟 , 王力 , 许时光 , 黄妮 , 牛铮 . 深空DSCOVR对地观测研究进展与展望[J]. 地球科学进展, 2024 , 39(12) : 1211 -1226 . DOI: 10.11867/j.issn.1001-8166.2024.093
Deep-space exploration, which serves as a pivotal avenue for uncovering the mysteries of the universe and fostering sustainable development, has emerged as the foremost strategic frontier in space technology. After decades of development, this technology has been widely used to explore various celestial bodies in the solar system. In February 2015, the first deep-space exploration satellite targeting Earth, the Deep Space Observatory, was successfully deployed at the Sun-Earth Lagrange Point 1, providing new perspectives and data for the study of Earth system science while also introducing new challenges to traditional satellite data research. This study comprehensively analyzed more than 100 related papers and conference summaries published on the official website of the National Aeronautics and Space Administration since the launch of the Deep Space Observatory. From three perspectives—basic research, applied research, and specialized research—this paper reviews the development status, advantages, and future directions of deep-space Earth observation. The findings reveal that deep-space Earth observations can be integrated with existing satellite-aircraft-ground systems, establishing a benchmark for multisource data fusion to create globally comprehensive, high-temporal-frequency, and multispectral datasets for an integrated Earth observation system. This approach provides temporally consistent, spatially continuous, and spectrally stable global observational data, demonstrating significant potential for studying largescale geophysical phenomena across the atmosphere, biosphere, hydrosphere, and lithosphere. Future advancements in sensor innovation, optimized detection technologies, and diverse observation points are expected to enable continuous, omnidirectional, and multidimensional Earth observations. These advancements will enhance our understanding of Earth's physical, chemical, and biological systems.
Key words: Deep space exploration; Remote sensing; Earth observation; DSCOVR; Earth sphere
1 | WANG Shuai, LU Bo. Development trend and prospect of world deep space exploration[J]. Space International, 2015(9): 43-49. |
王帅, 卢波. 世界深空探测发展态势及展望[J]. 国际太空, 2015(9): 43-49. | |
2 | REN Jie, GAO Feng, LI Yi, et al. Benchmarking analysis of deep space exploration between China and world space powers[J]. Dual Use Technologies & Products, 2016(15): 47-50. |
任杰, 高峰, 李意, 等. 中国与世界航天强国深空探测对标分析[J]. 军民两用技术与产品, 2016(15): 47-50. | |
3 | YU Dengyun, MA Jinan. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight, 2022(1): 17-27. |
于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022(1): 17-27. | |
4 | ZANDALINAS S I, FRITSCHI F B, MITTLER R. Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster[J]. Trends in Plant Science, 2021, 26(6): 588-599. |
5 | MCCULLOCH M T, WINTER A, SHERMAN C E, et al. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5?℃[J]. Nature Climate Change, 2024, 14: 171-177. |
6 | NANDINTSETSEG B, BOLDGIV B, CHANG J F, et al. Risk and vulnerability of Mongolian grasslands under climate change[J]. Environmental Research Letters, 2021, 16(3). DOI: 10.1088/1748-9326/abdb5b . |
7 | ROMáN-PALACIOS C, WIENS J J. Recent responses to climate change reveal the drivers of species extinction and survival[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 4 211-4 217. |
8 | KEYES A A, MCLAUGHLIN J P, BARNER A K, et al. An ecological network approach to predict ecosystem service vulnerability to species losses[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-21824-x . |
9 | MACLEOD M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution[J]. Science, 2021, 373(6 550): 61-65. |
10 | TANG F H M, LENZEN M, MCBRATNEY A, et al. Risk of pesticide pollution at the global scale[J]. Nature Geoscience, 2021, 14: 206-210. |
11 | ALONSO B, VALLADARES F. International efforts on global change research[M]// Earth observation of global change. Dordrecht: Springer Netherlands, 2007: 1-21. |
12 | STEFFEN W, RICHARDSON K, ROCKSTR?M J, et al. The emergence and evolution of Earth system science[J]. Nature Reviews Earth & Environment, 2020, 1: 54-63. |
13 | GUO Huadong. Earth system observation from space: from scientific satellite to moonbased platform[J]. National Remote Sensing Bulletin, 2016, 20(5): 716-723. |
郭华东. 地球系统空间观测: 从科学卫星到月基平台[J]. 遥感学报, 2016, 20(5): 716-723. | |
14 | MARSHAK A, HERMAN J, SZABO A, et al. Earth observations from DSCOVR/EPIC instrument[J]. Bulletin of the American Meteorological Society, 2018, 99(9): 1 829-1 850. |
15 | VALERO F P J, MARSHAK A, MINNIS P. Lagrange point missions: the key to next generation integrated Earth observations. DSCOVR innovation[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.745938 . |
16 | SONG W J, KNYAZIKHIN Y, WEN G Y, et al. Implications of whole-disc DSCOVR EPIC spectral observations for estimating Earth’s spectral reflectivity based on low-Earth-orbiting and geostationary observations[J]. Remote Sensing, 2018, 10(10). DOI: 10.3390/rs10101594 . |
17 | MARSHAK A, LYAPUSTIN A, SCHUSTER G L, et al. Editorial: DSCOVR EPIC/NISTAR: 5 years of observing Earth from the first Lagrangian point[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.963660 . |
18 | BLANK K, HUANG L K, HERMAN J, et al. Earth polychromatic imaging camera geolocation: strategies to reduce uncertainty[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.715296 . |
19 | GARCíA V M, SASI S, EFREMENKO D S, et al. Improvement of EPIC/DSCOVR image registration by means of automatic coastline detection[J]. Remote Sensing, 2019, 11(15). DOI: 10.3390/rs11151747 . |
20 | CEDE A, HUANG L K, MCCAULEY G, et al. Raw EPIC data calibration[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.702275 . |
21 | HERMAN J, HUANG L, MCPETERS R, et al. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole Earth as viewed by the DSCOVR spacecraft from the Earth-Sun Lagrange 1 orbit[J]. Atmospheric Measurement Techniques, 2018, 11(1): 177-194. |
22 | GEOGDZHAYEV I V, MARSHAK A. Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations[J]. Atmospheric Measurement Techniques, 2018, 11(1): 359-368. |
23 | DOELLING D, HANEY C, BHATT R, et al. The inter-calibration of the DSCOVR EPIC imager with Aqua-MODIS and NPP-VIIRS[J]. Remote Sensing, 2019, 11(13). DOI: 10.3390/rs11131609 . |
24 | GEOGDZHAYEV I V, MARSHAK A, ALEXANDROV M. Calibration of the DSCOVR EPIC visible and NIR channels using multiple LEO radiometers[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.671933 . |
25 | HANEY C, DOELLING D R, SU W Y, et al. Radiometric stability assessment of the DSCOVR EPIC visible bands using MODIS, VIIRS, and invariant targets as independent references[J]. Frontiers in Remote Sensing, 2022, 2. DOI:10.3389/frsen.2021.765913 . |
26 | ZHOU Y P, ZHAI P W, YANG Y K. Evaluation of EPIC oxygen bands stability with radiative transfer simulations over the south pole[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 310. DOI: 10.1016/j.jqsrt.2023.108737 . |
27 | LYAPUSTIN A, WANG Y, GO S, et al. Atmospheric correction of DSCOVR EPIC: version 2 MAIAC algorithm[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.748362 . |
28 | GO S, LYAPUSTIN A, SCHUSTER G L, et al. Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations[J]. Atmospheric Chemistry and Physics, 2022, 22(2): 1 395-1 423. |
29 | SASI S, NATRAJ V, GARCíA V M, et al. Model selection in atmospheric remote sensing with an application to aerosol retrieval from DSCOVR/EPIC, part 1: theory[J]. Remote Sensing, 2020, 12(22). DOI: 10.3390/rs12223724 . |
30 | GAO B C, LI R R, YANG Y K. Remote sensing of daytime water leaving reflectances of oceans and large inland lakes from EPIC onboard the DSCOVR spacecraft at Lagrange-1 point[J]. Sensors, 2019, 19(5). DOI: 10.3390/s19051243 . |
31 | VASILKOV A, LYAPUSTIN A, MITCHELL B G, et al. UV reflectance of the ocean from DSCOVR/EPIC: comparisons with a theoretical model and Aura/OMI observations[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(11): 2 087-2 099. |
32 | MARSHAK A, VáRNAI T, KOSTINSKI A. Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point[J]. Geophysical Research Letters, 2017, 44(10): 5 197-5 202. |
33 | MARSHAK A, DELGADO-BONAL A, KNYAZIKHIN Y. Effect of scattering angle on Earth reflectance[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.719610 . |
34 | NI X N, KNYAZIKHIN Y, SUN Y H, et al. Vegetation angular signatures of equatorial forests from DSCOVR EPIC and Terra MISR observations[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.766805 . |
35 | HAO D L, ASRAR G R, ZENG Y L, et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations[J]. Remote Sensing of Environment, 2019, 232. DOI: 10.1016/j.rse.2019.111320 . |
36 | FROUIN R, TAN J, COMPIèGNE M, et al. The NASA EPIC/DSCOVR ocean PAR product[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.833340 . |
37 | FELDMAN D R, SU W, MINNIS P. Subdiurnal to interannual frequency analysis of observed and modeled reflected shortwave radiation from Earth[J]. Geophysical Research Letters, 2021, 48(4). DOI: 10.1029/2020GL089221 . |
38 | LIM Y K, WU D L, KIM K M, et al. An investigation on seasonal and diurnal cycles of TOA shortwave radiations from DSCOVR/EPIC, CERES, MERRA-2, and ERA5[J]. Remote Sensing, 2021, 13(22). DOI: 10.3390/rs13224595 . |
39 | YANG X Y, BRIGHT J M, GUEYMARD C A, et al. Worldwide validation of an Earth Polychromatic Imaging Camera (EPIC) derived radiation product and comparison with recent reanalyses[J]. Solar Energy, 2022, 243: 421-430. |
40 | SU W Y, LIANG L S, DUDA D P, et al. Global daytime mean shortwave flux consistency under varying EPIC viewing geometries[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.747859 . |
41 | SU W Y, MINNIS P, LIANG L S, et al. Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements[J]. Atmospheric Measurement Techniques, 2020, 13(2): 429-443. |
42 | SU W Y, LIANG L S, DOELLING D R, et al. Determining the shortwave radiative flux from Earth polychromatic imaging camera[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(20): 11 479-11 491. |
43 | TIAN Q Y, LIU Q, GUANG J, et al. The estimation of surface albedo from DSCOVR EPIC[J]. Remote Sensing, 2020, 12(11). DOI: 10.3390/rs12111897 . |
44 | PENTTIL? A, MUINONEN K, IHALAINEN O, et al. Temporal variation of the shortwave spherical albedo of the Earth[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.790723 . |
45 | CARLSON B E, LACIS A A, RUSSELL G L, et al. Unique observational constraints on the seasonal and longitudinal variability of the Earth’s planetary albedo and cloud distribution inferred from EPIC measurements[J]. Frontiers in Remote Sensing, 2022, 2. DOI: 10.3389/frsen.2021.788525 . |
46 | MARSHAK A, KNYAZIKHIN Y. The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191: 7-12. |
47 | HOLDAWAY D, YANG Y K. Study of the effect of temporal sampling frequency on DSCOVR observations using the GEOS-5 nature run results (part I): Earth’s radiation budget[J]. Remote Sensing, 2016, 8(2). DOI: 10.3390/rs8020098 . |
48 | DELGADO-BONAL A, MARSHAK A, YANG Y, et al. Cloud height daytime variability from DSCOVR/EPIC and GOES-R/ABI observations[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.780243 . |
49 | DELGADO-BONAL A, MARSHAK A, YANG Y, et al. Global daytime variability of clouds from DSCOVR/EPIC observations[J]. Geophysical Research Letters, 2021, 48(4). DOI: 10.1029/2020GL091511 . |
50 | XU X G, WANG J, WANG Y, et al. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space[J]. Atmospheric Measurement Techniques, 2019, 12(6): 3 269-3 288. |
51 | XU X G, WANG J, WANG Y, et al. Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: first results from EPIC/DSCOVR at Lagrange-1 point[J]. Geophysical Research Letters, 2017, 44(14): 7 544-7 554. |
52 | GUI L, TAO M H, XU L N, et al. Performance of DSCOVR/EPIC diurnal aerosol products over China: ground validation and intercomparison[J]. Atmospheric Research, 2024, 301. DOI: 10.1016/j.atmosres.2024.107268 . |
53 | FISHER B L, KROTKOV N A, BHARTIA P K, et al. A new discrete wavelength backscattered ultraviolet algorithm for consistent volcanic SO2 retrievals from multiple satellite missions[J]. Atmospheric Measurement Techniques, 2019, 12(9): 5 137-5 153. |
54 | SUN J, VEEFKIND P, NANDA S, et al. The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations[J]. Atmospheric Measurement Techniques, 2019, 12(12): 6 319-6 340. |
55 | TORRES O, BHARTIA P K, TAHA G, et al. Stratospheric injection of massive smoke plume from Canadian boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(10). DOI: 10.1029/2020JD032579 . |
56 | LU Z D, WANG J, XU X G, et al. Hourly mapping of the layer height of thick smoke plumes over the western U.S. in 2020 severe fire season[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.766628 . |
57 | YANG Y K, MEYER K, WIND G, et al. Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation[J]. Atmospheric Measurement Techniques, 2019, 12(3): 2 019-2 031. |
58 | MEYER K, YANG Y K, PLATNICK S. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)[J]. Atmospheric Measurement Techniques, 2016, 9(4): 1 785-1 797. |
59 | VíCTOR M G, SASI S, EFREMENKO D S, et al. Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213: 241-251. |
60 | DAVIS A B, FERLAY N, LIBOIS Q, et al. Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: a physics-based approach[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 220: 84-96. |
61 | YIN B S, MIN Q L, MORGAN E, et al. Cloud-top pressure retrieval with DSCOVR EPIC oxygen A- and B-band observations[J]. Atmospheric Measurement Techniques, 2020, 13(10): 5 259-5 275. |
62 | ZHOU Y P, YANG Y K, GAO M, et al. Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC)[J]. Atmospheric Measurement Techniques, 2020, 13(3): 1 575-1 591. |
63 | ZHOU Y P, YANG Y K, ZHAI P W, et al. Cloud detection over sunglint regions with observations from the Earth polychromatic imaging camera[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.690010 . |
64 | GAO M, ZHAI P W, YANG Y K, et al. Cloud remote sensing with EPIC/DSCOVR observations: a sensitivity study with radiative transfer simulations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 230: 56-60. |
65 | HERMAN J, CEDE A, HUANG L, et al. Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for 2005-2018 estimated from OMI and EPIC observations[J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8 351-8 380. |
66 | YANG K, LIU X. Ozone profile climatology for remote sensing retrieval algorithms[J]. Atmospheric Measurement Techniques, 2019, 12(9): 4 745-4 778. |
67 | HUANG X Z, YANG K. Algorithm theoretical basis for ozone and sulfur dioxide retrievals from DSCOVR EPIC[J]. Atmospheric Measurement Techniques, 2022, 15(20): 5 877-5 915. |
68 | KRAMAROVA N A, ZIEMKE J R, HUANG L K, et al. Evaluation of version 3 total and tropospheric ozone columns from Earth polychromatic imaging camera on deep space climate observatory for studying regional scale ozone variations[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.734071 . |
69 | YANG B, KNYAZIKHIN Y, M?TTUS M, et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: theoretical basis[J]. Remote Sensing of Environment, 2017, 198: 69-84. |
70 | PISEK J, ARNDT S K, ERB A, et al. Exploring the potential of DSCOVR EPIC data to retrieve clumping index in Australian terrestrial ecosystem research network observing sites[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.652436 . |
71 | SONG W J, MU X H, MCVICAR T R, et al. Global quasi-daily fractional vegetation cover estimated from the DSCOVR EPIC directional hotspot dataset[J]. Remote Sensing of Environment, 2022, 269. DOI: 10.1016/j.rse.2021.112835 . |
72 | QIN W H, GOEL N S, WANG B Q. The hotspot effect in heterogeneous vegetation canopies and performances of various hotspot models[J]. Remote Sensing Reviews, 1996, 14(4): 283-332. |
73 | KNYAZIKHIN Y, MYNENI R B. DSCOVR EPIC vegetation Earth system data record: science data product guide version 2[R]. USA: NASA Langley ASDC, 2021. |
74 | KNYAZIKHIN Y, SONG W J, YANG B, et al. DSCOVR EPIC vegetation Earth system data record: science data product guide maturity level: provisional[R]. USA: NASA Langley ASDC, 2018. |
75 | SMOLANDER S, STENBERG P. A method to account for shoot scale clumping in coniferous canopy reflectance models[J]. Remote Sensing of Environment, 2003, 88(4): 363-373. |
76 | SMOLANDER S, STENBERG P. Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies[J]. Remote Sensing of Environment, 2005, 94(3): 355-363. |
77 | BONAN G B, LEVIS S, SITCH S, et al. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics[J]. Global Change Biology, 2003, 9(11): 1 543-1 566. |
78 | DAI Y J, DICKINSON R E, WANG Y P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance[J]. Journal of Climate, 2004, 17(12): 2 281-2 299. |
79 | MERCADO L M, BELLOUIN N, SITCH S, et al. Impact of changes in diffuse radiation on the global land carbon sink[J]. Nature, 2009, 458: 1 014-1 017. |
80 | HE M Z, JU W M, ZHOU Y L, et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity[J]. Agricultural and Forest Meteorology, 2013, 173: 28-39. |
81 | KNYAZIKHIN Y, SCHULL M A, STENBERG P, et al. Hyperspectral remote sensing of foliar nitrogen content[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): E185-E192. |
82 | STENBERG P, M?TTUS M, RAUTIAINEN M. Photon recollision probability in modelling the radiation regime of canopies: a review[J]. Remote Sensing of Environment, 2016, 183: 98-108. |
83 | LEWIS P, DISNEY M. Spectral invariants and scattering across multiple scales from within-leaf to canopy[J]. Remote Sensing of Environment, 2007, 109(2): 196-206. |
84 | SUN Y H, KNYAZIKHIN Y, SHE X J, et al. Seasonal and long-term variations in leaf area of Congolese rainforest[J]. Remote Sensing of Environment, 2022, 268. DOI: 10.1016/j.rse.2021.112762 . |
85 | WEBER M, HAO D L, ASRAR G R, et al. Exploring the use of DSCOVR/EPIC satellite observations to monitor vegetation phenology[J]. Remote Sensing, 2020, 12(15). DOI: 10.3390/rs12152384 . |
86 | ZHANG Z Y, ZHANG Y G, ZHANG Y, et al. The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2020, 240. DOI: 10.1016/j.rse.2020.111686 . |
87 | PISEK J, ODERA C A, KAHA M, et al. First validation of Earth Reflector Type Index (p) parameter from DSCOVR EPIC VESDR data product using terrestrial ecosystem research network observing sites in Australia[J]. Remote Sensing of Environment, 2023, 288. DOI: 10.1016/j.rse.2023.113511 . |
88 | CARN S A, KROTKOV N A, FISHER B L, et al. First observations of volcanic eruption clouds from the L1 Earth-Sun Lagrange point by DSCOVR/EPIC[J]. Geophysical Research Letters, 2018, 45(20): 11 456-11 464. |
89 | CARN S A, CLARISSE L, PRATA A J. Multi-decadal satellite measurements of global volcanic degassing[J]. Journal of Volcanology and Geothermal Research, 2016, 311: 99-134. |
90 | LU Z D, WANG J, CHEN X, et al. First mapping of monthly and diurnal climatology of Saharan dust layer height over the Atlantic Ocean from EPIC/DSCOVR in deep space[J]. Geophysical Research Letters, 2023, 50(5). DOI: 10.1029/2022GL102552 . |
91 | VáRNAI T, KOSTINSKI A B, MARSHAK A. Deep space observations of Sun glints from marine ice clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 735-739. |
92 | LI J Z, FAN S T, KOPPARLA P, et al. Study of terrestrial glints based on DSCOVR observations[J]. Earth and Space Science, 2019, 6(1): 166-173. |
93 | KOSTINSKI A, MARSHAK A, VáRNAI T. Deep space observations of terrestrial glitter[J]. Earth and Space Science, 2021, 8(2). DOI: 10.1029/2020EA001521 . |
94 | VáRNAI T, MARSHAK A, KOSTINSKI A B. Deep space observations of cloud glints: spectral and seasonal dependence[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19. DOI: 10.1109/LGRS.2020.3040144 . |
95 | VáRNAI T, MARSHAK A, KOSTINSKI A. Operational detection of Sun glints in DSCOVR EPIC images[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.777806 . |
96 | HERMAN J, WEN G Y, MARSHAK A, et al. Reduction in 317-780?nm radiance reflected from the sunlit Earth during the eclipse of 21 August 2017[J]. Atmospheric Measurement Techniques, 2018, 11(7): 4 373-4 388. |
97 | WEN G Y, MARSHAK A, HERMAN J, et al. Reduction of spectral radiance reflectance during the annular solar eclipse of 21 June 2020 observed by EPIC[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.777314 . |
98 | WEN G Y, MARSHAK A, TSAY S C, et al. Changes in the surface broadband shortwave radiation budget during the 2017 eclipse[J]. Atmospheric Chemistry and Physics, 2020, 20(17): 10 477-10 491. |
99 | ALBERS S, SALEEBY S M, KREIDENWEIS S, et al. A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling[J]. Atmospheric Measurement Techniques, 2020, 13(6): 3 235-3 261. |
100 | LOPEZ P. Forecasting the past: views of Earth from the Moon and beyond[J]. Bulletin of the American Meteorological Society, 101(7): E1190-E1200. |
101 | CARLSON B, LACIS A, COLOSE C, et al. Spectral signature of the biosphere: NISTAR finds it in our solar system from the Lagrangian L-1 point[J]. Geophysical Research Letters, 2019, 46(17/18): 10 679-10 686. |
102 | LACIS A A, CARLSON B E, RUSSELL G L, et al. Unique NISTAR-based climate GCM diagnostics of the Earth’s planetary albedo and spectral absorption through longitudinal data slicing[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.766917 . |
103 | YANG W D, MARSHAK A, VáRNAI T, et al. EPIC spectral observations of variability in Earth’s global reflectance[J]. Remote Sensing, 2018, 10(2). DOI: 10.3390/rs10020254 . |
104 | WEN G Y, MARSHAK A, SONG W J, et al. A relationship between blue and near-IR global spectral reflectance and the response of global average reflectance to change in cloud cover observed from EPIC[J]. Earth and Space Science, 2019, 6(8): 1 416-1 429. |
105 | JIANG J H, ZHAI A J, HERMAN J, et al. Using deep space climate observatory measurements to study the Earth as an exoplanet[J]. The Astronomical Journal, 2018, 156(1). DOI: 10.3847/1538-3881/aac6e . |
106 | GU L X, ZENG Z C, FAN S T, et al. Earth as a proxy exoplanet: simulating DSCOVR/EPIC observations using the Earth spectrum simulator[J]. The Astronomical Journal, 2022, 163(6). DOI: 10.3847/1538-3881/ac5e2e . |
107 | GU L X, FAN S T, LI J Z, et al. Earth as a proxy exoplanet: deconstructing and reconstructing spectrophotometric light curves[J]. The Astronomical Journal, 2021, 161(3). DOI: 10.3847/1538-3881/abd54a . |
108 | AIZAWA M, KAWAHARA H, FAN S T. Global mapping of an exo-Earth using sparse modeling[J]. The Astrophysical Journal, 2020, 896(1). DOI: 10.3847/1538-4357/ab8d30 . |
109 | FAN S T, LI C, LI J Z, et al. Earth as an exoplanet: a two-dimensional alien map[J]. The Astrophysical Journal Letters, 2019, 882(1). DOI: 10.3847/2041-8213/ab3a49 . |
110 | KAWAHARA H. Global mapping of the surface composition on an exo-Earth using color variability[J]. The Astrophysical Journal, 2020, 894(1). DOI: 10.3847/1538-4357/ab87a1 . |
111 | KAWAHARA H, MASUDA K. Bayesian dynamic mapping of an exo-Earth from photometric variability[J]. The Astrophysical Journal, 2020, 900(1). DOI: 10.3847/1538-4357/aba95e . |
112 | TEINTURIER L, VIEIRA N, JACQUET E, et al. Mapping the surface of partially cloudy exoplanets is hard[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(1): 440-447. |
113 | DAVIS A B, YANG Y K, MARSHAK A. EPIC/DSCOVR as a pathfinder in cloud remote sensing using differential oxygen absorption spectroscopy[J]. Frontiers in Remote Sensing, 2022, 3. DOI: 10.3389/frsen.2022.796273 . |
114 | GORKAVYI N, KROTKOV N, MARSHAK A. Earth observations from the Moon’s surface: dependence on lunar libration[J]. Atmospheric Measurement Techniques, 2023, 16(6): 1 527-1 537. |
115 | GORKAVYI N, CARN S, DELAND M, et al. Earth imaging from the surface of the Moon with a DSCOVR/EPIC-type camera[J]. Frontiers in Remote Sensing, 2021, 2. DOI: 10.3389/frsen.2021.724074 . |
116 | SHANG H L, DING Y X, GUO H D, et al. Simulation of Earth’s outward radiative flux and its radiance in Moon-based view[J]. Remote Sensing, 2021, 13(13). DOI: 10.3390/rs13132535 . |
/
〈 |
|
〉 |