收稿日期: 2024-09-20
修回日期: 2024-11-29
网络出版日期: 2025-02-19
基金资助
国家自然科学基金项目(42175109);国家重点研发计划项目(2023YFC3007601)
Progress in Cloud and Fog Observation Technology and Studies in Mountainous Regions
Received date: 2024-09-20
Revised date: 2024-11-29
Online published: 2025-02-19
Supported by
the National Natural Science Foundation of China(42175109);The National Key Research and Development Program of China(2023YFC3007601)
利用山地地形条件,可以对气溶胶—云—降水开展连续的梯度观测,获取云内垂直方向上气溶胶—云—降水分布特征,因此山地云雾观测是研究云降水形成机制的有效观测手段。梳理了近1个世纪以来山地云雾观测技术发展状况,总结了国内外的山地云雾观测研究成果。云滴采样技术经历了碰撞采样法、激光散射法和云粒子成像技术3个阶段。激光散射技术由于其稳定的观测性能是目前主要的直接观测手段,云粒子全息成像技术由于其保持了云雾真实环境和粒子形态特征等优势而受到关注和发展。欧洲是国际上较早开展山地气象观测的地区;我国从20世纪50年代开始山地云雾观测,由此开启了我国云降水物理研究的进程。发展至今,我国山地云物理观测站已涵盖我国的几个主要典型气候带,获取了气溶胶、云凝结核、大气冰核以及多类云的微物理特征,提高了对暖云和混合云形成机制的认知。对比国内外观测结果表明:在云物理特征方面,云滴数浓度主要范围为106~500 cm-3,液态水含量主要范围为0.01~0.3 g/m3,云滴数浓度和液态水含量随观测海拔高度略有增加。在不同季风天气影响下,虽然我国庐山和印度西高止山云物理观测站具有相近的观测高度,但庐山观测的平均云滴数浓度和液态水含量比印度西高止山低45 cm-3和0.05 g/m3。因此云微物理参数同时受到观测海拔高度和不同地域气候特征的影响。从机理研究上,由于欧美山地观测站海拔较高,重点围绕大气冰核和混合云特征,揭示了影响凇附和贝吉隆过程的影响因子(如过冷云滴、上升速度)的作用,以及山地特有的吹雪微物理机制。暖云的山地观测验证了碰并、湍流和夹卷等过程,尤其中尺度云滴和第二峰值对降水形成有重要作用,山地常见的毛毛雨与凝结核、弱上升气流、湍流以及高湿环境密切相关。我国云物理观测站接近边界层顶及以下位置,早期山地云雾观测获取了对暖云微物理和环境参量的起伏特征,尤其促进了对中尺度云滴产生尤为重要的碰并过程,因此对暖云起伏理论的发展作出了突出贡献。最后,对山地云雾观测研究提出了展望和建议。
郭丽君 , 王雪妮 , 段婧 , 陈宝君 , 常祎 , 李圆圆 , 王羽飞 , 栾天 , 张小鹏 , 李军 , 毕凯 , 宾振 , 蔡娟 , 亓鹏 . 山地云雾观测技术与研究进展[J]. 地球科学进展, 2024 , 39(12) : 1243 -1261 . DOI: 10.11867/j.issn.1001-8166.2024.096
Continuous vertical gradient observations of aerosols, clouds and precipitation in mountainous terrain provide critical insights into their distribution characteristics in vertical direction. Mountain cloud observation is thus an effective way for studying the formation mechanism of cloud and precipitation. This article reviews the development and current status of mountain clouds and fog observation technology over the past century, and summarizes the domestic and international research results of mountain clouds and fog observation. Cloud droplet sampling technology has evolved through three main stages: collision sampling, laser scattering, and cloud particle imaging. Currently, laser scattering technology is the primary method for cloud particle measurement due to its reliability, meanwhile cloud particle holographic imaging technology has advanced significantly owing to its capacity to preserve particles’ natural morphology and ambient conditions. Europe pioneered in meteorological observations in mountainous regions. In China, the mountain clouds and fog observation began in the 1950s, promoting the physical study of clouds and precipitation. Over the decades, mountain cloud physical observation stations in China have covered several typical climate zones. The physical characteristics of aerosols, cloud condensation nucleus, atmospheric ice nucleating particles and clouds were obtained, meanwhile the formation mechanisms for warm and mixed-phase clouds were investigated. A comparison of global mountainous observations reveals that the cloud droplet number concentration typically ranges from 106 to 500 cm-3, and the liquid water content typically ranges from 0.01 to 0.3 g/m3. Both parameters exhibit slight increases with altitude. Despite similar observation heights, the mean cloud droplet number concentration and liquid water content observed on Mount Lu were 45 cm-3 and 0.05 g/m3 lower, respectively, than those observed on the Western Ghats of India, primarily due to monsoonal differences. Thus, cloud microphysical parameters are influenced by both regional climate and observation altitude. In terms of cloud formation mechanism, the research in European and American has focused on the characteristics of atmospheric ice nucleating particles and formation mechanism of mixed phase cloud due to high-altitude of observation stations, highlighting the important effects of factors (supercooled droplets and updrafts) on rimming and Bergeron processes as well as blowing snow mechanism. Warm clouds observation in mountainous areas have confirmed key processes, including collision, turbulence, and entrainment, as well as the vital roles of mid-sized cloud droplets and secondary peaks on precipitation formation. Frequent drizzle in mountain regions is closely associated with cloud condensation nucleus, ice nucleus, weak updraft, turbulence and high-humidity conditions. In contrast, China’s cloud physics observation stations are located near the top of the boundary layer and below the boundary layer, so early mountain cloud and fog observations in China captured fluctuations in warm cloud microphysics and environmental parameters, which accelerated the collision-coalescence processes critical for the generation of mid-sized cloud droplets. So early mountain cloud observations have significantly contributed to advancing warm cloud fluctuations theories. Finally, prospects and suggestions are proposed for the cloud observation technologies and studies in mountainous regions.
1 | ZHAO P, XU X D, CHEN F, et al. The third atmospheric scientific experiment for understanding the Earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of the American Meteorological Society, 99(4): 757-776. |
2 | GARREAUD R D. The Andes climate and weather[J]. Advances in Geosciences, 2009, 22: 3-11. |
3 | BARRY R G. Mountain weather and climate[M]. 3rd ed. Cambridge: Cambridge University Press, 2008. |
4 | WHITEMAN C D. Mountain climates of North America[M]//Mountain meteorology. Oxford: Oxford University Press, 2000. |
5 | SMITH R B. 100 years of progress on mountain meteorology research[J]. Meteorological Monographs, 2019,59:20.1-20.73. |
6 | ZHENG Guoguang, CHEN Yue, CHEN Tianyu, et al. The observational study of summer orographic clouds structures of Qilian Mountains[J]. Advances in Earth Science, 2011, 26(10): 1 057-1 070. |
郑国光, 陈跃, 陈添宇, 等. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26(10): 1 057-1 070. | |
7 | MO R P, JOE P, ISAAC G A, et al. Mid-mountain clouds at whistler during the Vancouver 2010 winter olympics and Paralympics[J]. Pure and Applied Geophysics, 2014, 171(1): 157-183. |
8 | LI Zihua, YANG Jun, SHI Chune, et al. The physics of regional dense fog[M]. Beijing: China Meteorological Press, 2008. |
李子华, 杨军, 石春娥, 等. 地区性浓雾物理[M]. 北京: 气象出版社, 2008. | |
9 | MENDONCA B G, IWAOKA W T. The trade wind inversion at the slopes of Mauna Loa, Hawaii[J]. Journal of Applied Meteorology, 1969, 8(2): 213-219. |
10 | WU Dui, ZHAO Bo, DENG Xuejiao, et al. A study on bad visibility over foggy section of freeway in Nanling Mountainous region[J]. Plateau Meteorology, 2007, 26(3): 649-654. |
吴兑, 赵博, 邓雪娇, 等. 南岭山地高速公路雾区恶劣能见度研究[J]. 高原气象, 2007, 26(3): 649-654. | |
11 | LUAN Tian, YANG Jun, LUO Yajun, et al. Unsymmetrical variation characteristics of fog and mist frequency in mountain area of west Hubei Province in recent 50 years[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2013, 5(3): 216-221. |
栾天, 杨军, 骆亚军, 等. 近50a鄂西山区雾和轻雾发生频次的非对称变化特征[J]. 南京信息工程大学学报(自然科学版), 2013, 5(3): 216-221. | |
12 | WU Dui, DENG Xuejiao, MAO Jietai, et al. A study on macro-and micro-structures of heavy fog and visibility at freeway in the Nanling Dayaoshan Mountain[J]. Acta Meteorologica Sinica, 2007, 65(3): 406-415. |
吴兑, 邓雪娇, 毛节泰, 等. 南岭大瑶山高速公路浓雾的宏微观结构与能见度研究[J]. 气象学报, 2007, 65(3): 406-415. | |
13 | CHEN Tianyu, ZHENG Guoguang, CHEN Yue, et al. Observational experiment on generation and development of summer orographic cloud during the southwest air current pattern in Qilian Mountain[J]. Plateau Meteorology, 2010, 29(1): 152-163. |
陈添宇, 郑国光, 陈跃, 等. 祁连山夏季西南气流背景下地形云形成和演化的观测研究[J]. 高原气象, 2010, 29(1): 152-163. | |
14 | Z?NGL G. Interaction between dynamics and cloud microphysics in orographic precipitation enhancement: a high-resolution modeling study of two north Alpine heavy-precipitation events[J]. Monthly Weather Review, 2007, 135(8): 2 817-2 840. |
15 | GEERTS B, MIAO Q, YANG Y. Boundary layer turbulence and orographic precipitation growth in cold clouds: evidence from profiling airborne radar data[J]. Journal of the Atmospheric Sciences, 2011, 68(10): 2 344-2 365. |
16 | HOUZE R A. Orographic effects on precipitating clouds[J]. Reviews of Geophysics, 2012, 50(1). DOI:10.1029/2011RG000365 . |
17 | ROE G H. Orographic precipitation[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 645-671. |
18 | RAMELLI F, HENNEBERGER J, DAVID R O, et al. Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley[J]. Atmospheric Chemistry and Physics, 2021, 21(6): 5 151-5 172. |
19 | KINGSMILL D E, PERSSON P O G, HAIMOV S, et al. Mountain waves and orographic precipitation in a northern Colorado winter storm[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 836-853. |
20 | WANG Xiaoming, XIE Jingfang. The analysis of the effects of topography in northeast China on strong covection weather[J]. Scientia Geographica Sinica, 1994, 14(4): 347-354. |
王晓明, 谢静芳. 东北地形对强对流天气影响的分析[J]. 地理科学, 1994, 14(4): 347-354. | |
21 | WANG Ning, XU Xiangde, XU Hongxiong, et al. Water vapor transport features and potential vorticity analysis of a northeast cold vortex rainstorm[J]. Scientia Geographica Sinica, 2014, 34(2): 211-219. |
王宁, 徐祥德, 徐洪雄, 等. 一次东北冷涡暴雨的水汽输送特征和位涡分析[J]. 地理科学, 2014, 34(2): 211-219. | |
22 | WANG Xiujuan, RAN Lingkun, QI Yanbin, et al. Analysis of characteristics of gravity waves of heavy rainfall event based on microbarograph observation[J]. Acta Physica Sinica, 2021, 70(23): 271-283. |
王秀娟, 冉令坤, 齐彦斌, 等. 基于微压计观测的暴雨过程重力波特征分析[J]. 物理学报, 2021, 70(23): 271-283. | |
23 | YANG Kan, JI Xiaoling, MAO Lu, et al. Analysis on influence of Helan Mountain topography on extraordinary severe flood-causing rainstorm under abnormal circulation background occurring on 21 August[J]. Journal of Natural Disasters, 2020, 29(1): 132-142. |
杨侃, 纪晓玲, 毛璐, 等. 异常环流背景下贺兰山地形对8.21特大致洪暴雨的影响分析[J]. 自然灾害学报, 2020, 29(1): 132-142. | |
24 | GAO Liangshu. Numerical study on orographic summertime cloud structure and precipitation mechanism over the Liupan Mountain area[D]. Beijing: China Academy of Meteorological Sciences, 2020. |
高亮书. 六盘山地区夏季地形云系结构及其降水形成机制数值模拟研究[D]. 北京: 中国气象科学研究院, 2020. | |
25 | MA Simin, MU Jianhua, SHU Zhiliang, et al. Topography sensitivity simulation test of a typical rainstorm process in Liupan Mountain region[J]. Journal of Arid Meteorology, 2022, 40(3): 457-468. |
马思敏, 穆建华, 舒志亮, 等. 六盘山区一次典型暴雨过程的地形敏感性模拟试验[J]. 干旱气象, 2022, 40(3): 457-468. | |
26 | ZHAO Qingyun, ZHANG Wu, CHEN Xiaoyan, et al. Propagation characteristics of mesoscale convection system in an event of severe convection rainstorm over both sides of Liupanshan Mountains[J]. Plateau Meteorology, 2018, 37(3): 767-776. |
赵庆云, 张武, 陈晓燕, 等. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776. | |
27 | STEKL J, PODZIMEK J. Old mountain meteorological station milesovka (donnersberg) in central Europe[J]. Bulletin of the American Meteorological Society, 1993, 74(5): 831-834. |
28 | BENISTON M, DIAZ H F, BRADLEY R S. Climatic change at high elevation sites: an overview[M]// Climatic change at high elevation sites. Dordrecht: Springer Netherlands, 1997: 1-19. |
29 | ZHANG Gaizhen, LI Beibei, LU Yatian. Zhu Kezhen and Taishan Riguanfeng meteorological station[J]. Journal of Shandong University of Science and Technology (Social Sciences), 2020, 22(6): 29-34. |
张改珍, 李蓓蓓, 路雅恬. 竺可桢与泰山日观峰气象台[J]. 山东科技大学学报(社会科学版), 2020, 22(6): 29-34. | |
30 | MASON B J. The physics of clouds [M]. Cambridge: Oxford University Press, 1971. |
梅森, 云物理学[M]. 北京: 科学出版社, 1971. | |
31 | BAUMGARDNER D. An analysis and comparison of five water droplet measuring instruments[J]. Journal of Climate and Applied Meteorology, 1983, 22(5): 891-910. |
32 | ZHOU Xiuji. Study on the microphysical mechanism of warm cloud precipitation [M]. Beijing: Science Press, 2000. |
周秀骥. 暖云降水微物理机制的研究[M]. 北京: 科学出版社, 2000. | |
33 | XU Huaying, GU Zhenchao. On the formation of the precipitation element in a shallow warm-cloud[J]. Acta Meteorologica Sinica, 1963, 33(1): 108-114. |
徐华英, 顾震潮. 起伏条件下重力碰并造成的暖性薄云降水[J]. 气象学报, 1963, 33(1): 108-114. | |
34 | WEN Jingsong. The effect of the correlation time of the undulating field on the random growth of water droplets[J]. Acta Meteorologica Sinica, 1964, 34(3): 369-377. |
温景嵩. 起伏场的相关时间对水滴随机长大的作用[J]. 气象学报, 1964, 34(3): 369-377. | |
35 | DOULGERIS K M, KOMPPULA M, ROMAKKANIEMI S, et al. In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups[J]. Atmospheric Measurement Techniques, 2020, 13(9): 5 129-5 147. |
36 | COELHO A A, BRENGUIER J L, PERRIN T. Droplet spectra measurements with the FSSP-100. part I: low droplet concentration measurements[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 1 748-1 755. |
37 | COELHO A A, BRENGUIER J L, PERRIN T. Droplet spectra measurements with the FSSP-100. part II: coincidence effects[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 1 756-1 761. |
38 | GULTEPE I, ISAAC G A, JOE P, et al. Roundhouse (RND) mountain top research site: measurements and uncertainties for winter alpine weather conditions[J]. Pure and Applied Geophysics, 2014, 171(1): 59-85. |
39 | LU C S, LIU Y G, NIU S J, et al. Examination of microphysical relationships and corresponding microphysical processes in warm fogs[J]. Acta Meteorologica Sinica, 2013, 27(6): 832-848. |
40 | SPIEGEL J K, ZIEGER P, BUKOWIECKI N, et al. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)[J]. Atmospheric Measurement Techniques, 2012, 5(9): 2 237-2 260. |
41 | KNOLLENBERG R G. The optical array: an alternative to scattering or extinction for airborne particle size determination[J]. Journal of Applied Meteorology, 1970, 9(1): 86-103. |
42 | LAWSON R P, O’CONNOR D, ZMARZLY P, et al. The 2D-S (stereo) probe: design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(11): 1 462-1 477. |
43 | WANG Lei, LI Chengcai, ZHAO Zengliang, et al. Application of 2D habit classification in cloud microphysics analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 201-212. |
王磊, 李成才, 赵增亮, 等. 二维粒子形状分类技术在云微物理特征分析中的应用[J]. 大气科学, 2014, 38(2): 201-212. | |
44 | LAWSON R P, BAKER B A, ZMARZLY P, et al. Microphysical and optical properties of atmospheric ice crystals at south pole station[J]. Journal of Applied Meteorology and Climatology, 2006, 45(11): 1 505-1 524. |
45 | RYERSON C C, POLITOVICH M K, RANCOURT K L. Overview of Mount Washington icing sensors project [Z]. Prepared for the 38th Aerospace Sciences Meeting and Exhibit, 2003. |
46 | LOWENTHAL D H, HALLAR A G, DAVID R O, et al. Mixed-phase orographic cloud microphysics during StormVEx and IFRACS[J]. Atmospheric Chemistry and Physics, 2019, 19(8): 5 387-5 401. |
47 | GUO Xueliang, YU Ziping, YANG Zehou, et al. Development and application of the high-performance airborne cloud particle imager[J]. Acta Meteorologica Sinica, 2020, 78(6): 1 050-1 064. |
郭学良, 于子平, 杨泽后, 等. 高性能机载云粒子成像仪研制及应用[J]. 气象学报, 2020, 78(6): 1 050-1 064. | |
48 | CAI L L, LIU L, ZENG Q W, et al. Design and experiment of a lightweight cloud particle imager[J]. Measurement Science and Technology, 2024, 35(11). DOI:10.1088/1361-6501/ad6b40 . |
49 | ZHANG R, XIAO H X, GAO Y, et al. Shape classification of cloud particles recorded by the 2D-S imaging probe using a convolutional neural network[J]. Journal of Meteorological Research, 2023, 37(4): 521-535. |
50 | CONWAY B J, CAUGHEY S J, BENTLEY A N, et al. Ground-based and airborne holography of ice and water clouds[J]. Atmospheric Environment (1967), 1982, 16(5): 1 193-1 207. |
51 | SILVERMAN B A, THOMPSON B J, WARD J H. A laser-fog disdrometer[J]. Journal of Applied Meteorology, 1964, 3(6): 792-801. |
52 | KOZIKOWSKA A, HAMAN K, SUPRONOWICZ J. Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method[J]. Quarterly Journal of the Royal Meteorological Society, 1984, 110(463): 65-73. |
53 | BORRMANN S, JAENICKE R, NEUMANN P. On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography[J]. Atmospheric Research, 1993, 29(3/4): 229-245. |
54 | BORRMANN S, JAENICKE R, MASER R, et al. Instrument intercomparison study on cloud droplet size distribution measurements: holography vs. laser optical particle counter[J]. Journal of Atmospheric Chemistry, 1994, 19(1): 253-258. |
55 | RAMELLI F, BECK A, HENNEBERGER J, et al. Using a holographic imager on a tethered balloon system for microphysical observations of boundary layer clouds[J]. Atmospheric Measurement Techniques, 2020, 13(2): 925-939. |
56 | BECK A, HENNEBERGER J, SCH?PFER S, et al. HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager[J]. Atmospheric Measurement Techniques, 2017, 10(2): 459-476. |
57 | WANG Peng, LIU Lei, LIU Xichuan, et al. Research status and progress of balloon-borne cloud and precipitation particles probe[J]. Advances in Earth Science, 2020, 35(7): 704-714. |
王鹏, 刘磊, 刘西川, 等. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714. | |
58 | LIN Xiaodan. Study on holographic three-dimensional visualization of combustion particle fragmentation and droplet splash and wind tunnel test of cloud particles[D]. Hangzhou: Zhejiang University, 2021. |
林小丹. 燃烧颗粒破碎和液滴飞溅全息三维可视化及云雾颗粒风洞测试研究[D]. 杭州: 浙江大学, 2021. | |
59 | ZENG Qingwei, LIU Lei, HU Shuai, et al. The actuality and progress of digital holographic techniques for cloud particle measurement[J]. Advances in Earth Science, 2023, 38(7): 661-674. |
曾庆伟, 刘磊, 胡帅, 等. 数字全息云粒子测量技术现状及进展[J]. 地球科学进展, 2023, 38(7): 661-674. | |
60 | GAO Yangzi, WANG Jun, TANG Jiabin, et al. Dispersion of cloud droplet based on pulsed digital holographic interferometry[J]. Acta Optica Sinica, 2022, 42(6): 157-166. |
高阳子, 王骏, 唐家斌, 等. 基于脉冲数字全息干涉术的云滴谱离散度研究[J]. 光学学报, 2022, 42(6): 157-166. | |
61 | YANG Chenyu, WANG Jun, ZHANG Chuan, et al. Observation method of microphysical parameters of ice crystals in cloud based on digital holography[J]. Acta Optica Sinica, 2024, 44(6). DOI:10.3788/AOS231067 . |
杨晨遇, 王骏, 张川, 等. 基于数字全息的云中冰晶微物理参数观测方法[J]. 光学学报, 2024,44(6). DOI:10.3788/AOS231067 . | |
62 | ZHANG Chuan, WANG Jun, ZHOU Hao, et al. Digital holographic method for observation of microphysical parameters of orographic clouds[J]. Acta Photonica Sinica, 2023, 52(12): 170-182. |
张川, 王骏, 周浩, 等. 地形云微物理参数观测的数字全息方法研究[J]. 光子学报, 2023, 52(12): 170-182. | |
63 | CHA J W, YUM S S. Characteristics of precipitation particles measured by PARSIVEL disdrometer at a mountain and a coastal site in Korea[J]. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57(2): 261-276. |
64 | ZHAN Lishan, CHEN Wankui, HUANG Meiyuan. Preliminary analysis on the fluctuation data of cloud microphysics on the Hengshan and Taishan Mountains[C]// Studies on cloud/fog precipitation microphysics in China. Beijing: Science Press, 1965: 30-40. |
詹丽珊, 陈万奎, 黄美元 .南岳和泰山云中微结构起伏资料的初步分析[C]//我国云雾降水微物理特征的研究.北京: 科学出版社,1965: 30-40. | |
65 | ZHAO Tianbao, LIU Hongtao, YAO Li. Constructing an atmospheric collaborative observation network and big data platform[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(5): 1 952-1 960. |
赵天保, 刘洪韬, 姚利. 大气协同观测网络与大数据平台建设[J]. 大气科学, 2024, 48(5): 1 952-1 960. | |
66 | SIEBERT H, SHAW R A, DITAS J, et al. High-resolution measurement of cloud microphysics and turbulence at a mountaintop station[J]. Atmospheric Measurement Techniques, 2015, 8(8): 3 219-3 228. |
67 | LOHMANN U, HENNEBERGER J, HENNEBERG O, et al. Persistence of orographic mixed-phase clouds[J]. Geophysical Research Letters, 2016, 43(19): 10 512-10 519. |
68 | LACHER L, DEMOTT P J, LEVIN E J T, et al. Background free-tropospheric ice nucleating particle concentrations at mixed-phase cloud conditions[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18): 10 506-10 525. |
69 | BORYS R D, WETZEL M A. Storm peak laboratory: a research, teaching, and service facility for the atmospheric sciences[J]. Bulletin of the American Meteorological Society, 1997, 78(10): 2 115-2 123. |
70 | HINDMAN E E, CAMPBELL M A, BORYS R D. A ten-winter record of cloud-droplet physical and chemical properties at a mountaintop site in Colorado[J]. Journal of Applied Meteorology, 1994, 33(7): 797-807. |
71 | HICKS J R, VALI G. Ice nucleation in clouds by liquefied propane spray[J]. Journal of Applied Meteorology, 1973, 12(6): 1 025-1 034. |
72 | WEINSTEIN A I, HICKS J R. Use of compressed air for supercooled fog dispersal[J]. Journal of Applied Meteorology, 1976, 15(11): 1 226-1 231. |
73 | KONWAR M, DAS S K, DESHPANDE S M, et al. Microphysics of clouds and rain over the western ghat[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 6 140-6 159. |
74 | ANIL K V, PANDITHURAI G, LEENA P P, et al. Investigation of aerosol indirect effects on monsoon clouds usingground-based measurements over a high-altitude site in Western Ghats[J]. Atmospheric Chemistry and Physics, 2016, 16(13): 8 423-8 430. |
75 | LEENA P P, VARGHESE M, ANIL K V, et al. Droplet characteristics in monsoon clouds before rain as observed over a high altitude site in Western Ghats, India[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 221. DOI:10.1016/j.jastp.2021.105709 . |
76 | SONG J I, YUM S S, GULTEPE I, et al. Development of a new visibility parameterization based on the measurement of fog microphysics at a mountain site in Korea[J]. Atmospheric Research, 2019, 229: 115-126. |
77 | TESSENDORF S A, FRENCH J R, FRIEDRICH K, et al. A transformational approach to winter orographic weather modification research: the SNOWIE project[J]. Bulletin of the American Meteorological Society, 2018, 100(1): 71-92. |
78 | MANTON M J, WARREN L, KENYON S L, et al. A confirmatory snowfall enhancement project in the snowy mountains of Australia. part I: project design and response variables[J]. Journal of Applied Meteorology and Climatology, 2011, 50(7): 1 432-1 447. |
79 | ANDREWS E, OGREN J A, BONASONI P, et al. Climatology of aerosol radiative properties in the free troposphere[J]. Atmospheric Research, 2011, 102(4): 365-393. |
80 | COLLAUD C M, ANDREWS E, ALIAGA D, et al. Identification of topographic features influencing aerosol observations at high altitude stations[J]. Atmospheric Chemistry and Physics, 2018, 18(16): 12 289-12 313. |
81 | NIU Shengjie, SUN Jiming, CHEN Yue, et al. Observation and analysis of mass concentration of dust and sand aerosol in spring in Helanshan area[J]. Plateau Meteorology, 2001, 20(1): 82-87. |
牛生杰, 孙继明, 陈跃, 等. 贺兰山地区春季沙尘气溶胶质量浓度的观测分析[J]. 高原气象, 2001, 20(1): 82-87. | |
82 | LIU Chenxi, JIANG Mengjiao, WU Hao, et al. Long-term evolution and sources of the black carbon at Waliguan station over the Qinghai-Tibetan Plateau[J]. Acta Meteorologica Sinica, 2023, 81(3): 469-477. |
刘晨曦, 蒋梦姣, 吴昊, 等. 青藏高原瓦里关站黑碳气溶胶长期演变特征及来源分析[J]. 气象学报, 2023, 81(3): 469-477. | |
83 | ZHANG Z J, XU W Q, ZHANG Y, et al. Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China[J]. Atmospheric Chemistry and Physics, 2024, 24(14): 8 473-8 488. |
84 | WANG G, LI J, CHENG C, et al. Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and East China during spring 2009-part 1: EC, OC and inorganic ions[J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4 221-4 235. |
85 | JAYACHANDRAN V, NAIR V S, BABU S S. CCN activation properties at a tropical hill station in Western Ghats during south-west summer monsoon: vertical heterogeneity[J]. Atmospheric Research, 2018, 214: 36-45. |
86 | DUAN J, CHEN Y, WANG W L, et al. Cable-car measurements of vertical aerosol profiles impacted by mountain-valley breezes in Lushan Mountain, East China[J]. Science of the Total Environment, 2021, 768. DOI:10.1016/j.scitotenv.2020.144198 . |
87 | MENG Qing, BAI Hongying, ZHAO Ting, et al. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Natural Resources, 2021, 33(1): 240-248. |
孟清, 白红英, 赵婷, 等. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248. | |
88 | SHEN Lijuan, WANG Honglei, YIN Yan, et al. Size distributions of aerosol during the summer at the summit of Mountain Taishan (1 534 m) in central East China[J]. Environmental Science, 2019, 40(5): 2 019-2 026. |
沈利娟, 王红磊, 银燕, 等. 泰山顶(1 534 m)夏季气溶胶粒径分布特征[J]. 环境科学, 2019, 40(5): 2 019-2 026. | |
89 | NUGENT A D, WATSON C D, THOMPSON G, et al. Aerosol impacts on thermally driven orographic convection[J]. Journal of the Atmospheric Sciences, 2016, 73(8): 3 115-3 132. |
90 | MARTUCCI G, OVADNEVAITE J, CEBURNIS D, et al. Impact of volcanic ash plume aerosol on cloud microphysics[J]. Atmospheric Environment, 2012, 48: 205-218. |
91 | ROSENFELD D, DAI J, YU X, et al. Inverse relations between amounts of air pollution and orographic precipitation[J]. Science, 2007, 315(5 817): 1 396-1 398. |
92 | XU Xiaohong, YU Xing, DAI Jin. Effect of aerosol on orographic precipitation in Qinling Mountains[J]. Meteorological Monthly, 2009, 35(1): 37-47. |
徐小红, 余兴, 戴进. 气溶胶对秦岭山脉地形云降水的影响[J]. 气象, 2009, 35(1): 37-47. | |
93 | WANG Ying, ZHU Bin, KANG Hanqing, et al. Theoretical and observational study on below-cloud rain scavenging of aerosol particles[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3): 306-313, 321. |
王瑛, 朱彬, 康汉青, 等. 气溶胶云下清除理论及观测研究[J]. 中国科学院大学学报, 2014, 31(3): 306-313, 321. | |
94 | SU T N, LI Z Q, HENAO N R, et al. Constraining effects of aerosol-cloud interaction by accounting for coupling between cloud and land surface[J]. Science Advances, 2024, 10(21). DOI:10.1126/sciadv.adl5044 . |
95 | CUI Lian, HU Jianhua, QI Yanbin, et al. Observation and analysis of cloud condensation nucleus concentration in Jingyu and Baicheng, Jilin Province[J]. Meteorological Disaster Prevention, 2020, 27(1): 34-37. |
崔莲, 胡建华, 齐彦斌, 等. 吉林省靖宇、白城云凝结核浓度观测分析[J]. 气象灾害防御, 2020, 27(1): 34-37. | |
96 | LI Li, YIN Yan, GU Xuesong, et al. Observational study of cloud condensation nuclei properties at various altitudes of Huangshan Mountains[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 410-420. |
李力, 银燕, 顾雪松, 等. 黄山地区不同高度云凝结核的观测分析[J]. 大气科学, 2014, 38(3): 410-420. | |
97 | CHEN K, YIN Y, CHEN C, et al. Observations of cloud condensation nuclei in Mt. Huang: instrumentation and early observations[C]// PIAGENG 2009: intelligent information, control, and communication technology for agricultural engineering. Zhangjiajie, China: SPIE, 2009. |
98 | MIAO Q, ZHANG Z F, LI Y W, et al. Measurement of Cloud Condensation Nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution[J]. Atmospheric Environment, 2015, 113: 127-134. |
99 | FAN Shuxian, AN Xialan. Measurement and analysis of the concentration of cloud condensation nuclei in MT. Helanshan area[J]. Journal of Desert Research, 2000, 20(3): 338-340. |
樊曙先, 安夏兰. 贺兰山地区云凝结核浓度的测量及分析[J]. 中国沙漠, 2000, 20(3): 338-340. | |
100 | SANG Jianren, TAO Tao, YUE Yanyu, et al. Distribution of cloud condensation nuclei over desert and polluted city beside the Helan Mountains[J]. Journal of Desert Research, 2012, 32(2): 484-490. |
桑建人, 陶涛, 岳岩裕, 等. 贺兰山两侧沙漠及污染城市CCN分布特征的观测研究[J]. 中国沙漠, 2012, 32(2): 484-490. | |
101 | DUAN J, CHEN Y, ZHANG X P, et al. Influence of aerosol physicochemical properties on CCN activation during the Asian winter monsoon at the summit of Mt. Lu, China[J]. Atmospheric Environment, 2023, 296. DOI:10.1016/j.atmosenv.2023.119592 . |
102 | LOWENTHAL D H, BORYS R D, WETZEL M A. Aerosol distributions and cloud interactions at a mountaintop laboratory[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D18). DOI:10.1029/2001JD002046 . |
103 | HU D W, LIU D T, ZHAO D L, et al. Closure investigation on cloud condensation nuclei ability of processed anthropogenic aerosols[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15). DOI:10.1029/2020JD032680 . |
104 | CHEN Y C, HUO J, LI X, et al. Classification and characteristic analysis of the clouds and dust in a dust-carrying precipitation process based on multi-source remote sensing observations[J]. Atmospheric Pollution Research, 2022, 13(1). DOI:10.1016/j.apr.2021.101267 . |
105 | VALI G, DEMOTT P J, M?HLER O, et al. Technical note: a proposal for ice nucleation terminology[J]. Atmospheric Chemistry and Physics, 2015, 15(18): 10 263-10 270. |
106 | HODSHIRE A L, LEVIN E J T, HALLAR A G, et al. A high-resolution record of ice nuclei concentrations between -20 to -30 ℃ for fall and winter at storm peak laboratory with the autonomous continuous flow diffusion chamber ice activation spectrometer[J]. Atmospheric Measurement Techniques Discussions, 2022. DOI: 10.5194/amt-2022-216 . |
107 | LACHER L, LOHMANN U, BOOSE Y, et al. The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the high altitude research station jungfraujoch[J]. Atmospheric Chemistry and Physics, 2017, 17(24): 15 199-15 224. |
108 | ZHANG Jianxin, LIAO Feijia, GAO Ziyi, et al. Study on atmospheric ice nuclei on north slop of mid-Tianshan Mountains in summer[J]. Plateau Meteorology, 2006, 25(1): 138-142. |
张建新, 廖飞佳, 高子毅, 等. 夏季新疆中天山北坡大气冰核的浓度观测分析[J]. 高原气象, 2006, 25(1): 138-142. | |
109 | LI Yanwei, DU Bingyu. Measurement and analysis of concentration of atmospheric ice nuclei in Tianshan Mountain area[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(3): 364-370. |
李艳伟, 杜秉玉, 新疆天山山区大气冰核浓度的测量及分析[J]. 南京气象学院学报, 2003, 26(3): 364-370. | |
110 | NIU Shengjie, AN Xialan, CHEN Yue, et al. Measurements and analysis of concentrations of atmospheric ice nuclei in the Helanshan area[J]. Journal of Nanjing Institute of Meteorology, 2000, 23(2): 294-298. |
牛生杰, 安夏兰, 陈跃, 等.贺兰山地区大气冰核浓度的测量及初步分析[J]. 南京气象学院学报, 2000, 23(2): 294-298. | |
111 | SU Hang, YIN Yan, LU Chunsong, et al. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan area[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 386-398. |
苏航, 银燕, 陆春松, 等. 新型扩散云室搭建及其对黄山地区大气冰核的观测研究[J]. 大气科学, 2014, 38(2): 386-398. | |
112 | CONEN F, RODRíGUEZ S, GLIN C H, et al. Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland[J]. Tellus B: Chemical and Physical Meteorology, 2022, 67(1). DOI:10.3402/tellusb.v67.25014 . |
113 | SUN Y, ZHU Y J, QI Y B, et al. Measurement report: atmospheric ice nuclei in the Changbai Mountains (2623?m?a.s.l.) in northeastern Asia[J]. Atmospheric Chemistry and Physics, 2024, 24(5): 3 241-3 256. |
114 | YOU Laiguang, SHI Anying. The measurement and analysis of ice-nucleus concentration at Peking during the period from March 18th to April 20th in 1963[J]. Acta Meteorological Sinica, 1964(4): 548-554. |
游来光, 石安英. 北京地区1963年春季冰核浓度变化特点的观测分析[J]. 气象学报, 1964(4): 548-554. | |
115 | ZHAO Jianping, ZHANG Mi, WANG Yuxi, et al. Analysis and study of atmospheric ice nuclei observation in northern China[J]. Acta Meteorological Sinica, 1965(4): 416-422. |
赵剑平, 张滵, 王玉玺, 等. 我国北部地区大气冰核观测的分析研究[J]. 气象学报, 1965(4): 416-422. | |
116 | WANG Xuelin, ZHANG Wanjun, XIONG Shangqing. Atmospheric ice nuclei in spring in Baicheng area[J]. Acta Meteorological Sinica, 1965, 35(3): 273-279. |
汪学林, 张万钧, 熊尚清. 白城地区春季的大气冰核[J]. 气象学报, 1965, 35(3): 273-279. | |
117 | JIANG H, YIN Y, SU H, et al. The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in SouthEast China using a newly built static vacuum water vapor diffusion chamber[J]. Atmospheric Research, 2015, 153: 200-208. |
118 | BI Kai, HUANG Mengyu, MA Xincheng, et al. Observation and analysis of atmospheric ice-nucleating particles in online continuous-flow diffusion chamber in winter in North China[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(6): 1 243-1 257. |
毕凯, 黄梦宇, 马新成, 等. 在线连续流量扩散云室对华北冬季大气冰核的观测分析[J]. 大气科学, 2020, 44(6): 1 243-1 257. | |
119 | WU Minglin, LIU Jun, HUANG Wenjuan, et al. The measurement and analysis of atmospheric ice-nucleus concentraton on Fujian Shita Mountain[J]. Journal of Tropical Meteorology, 1986, 2(1): 71-78. |
吴明林, 刘峻, 黄文娟, 等. 福建石塔山大气冰核的观测和分析[J]. 热带气象, 1986, 2(1): 71-78. | |
120 | BI Kai, DING Deping, YANG Shuai, et al. The development and application of a Freezing Ice Nucleation Detector Array (FINDA) instrument on immersion mode measurement[J]. Acta Meteorologica Sinica, 2021, 79(5): 864-877. |
毕凯, 丁德平, 杨帅, 等. 一种浸润冻结机制冰核测量装置(FINDA)的搭建与应用[J]. 气象学报, 2021, 79(5): 864-877. | |
121 | POLITOVICH M K, VALI G. Observations of liquid water in orographic clouds over ELK mountain[J]. Journal of the Atmospheric Sciences, 1983, 40(5): 1 300-1 312. |
122 | BORYS R D, LOWENTHAL D H, COHN S A, et al. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate[J]. Geophysical Research Letters, 2003, 30(10). DOI:10.1029/2002GL016855 . |
123 | LEENA P P, KUMAR V A, MUKHERJEE S, et al. Influence of aerosol physico-chemical properties on cloud microphysical parameters perceived using in situ high altitude observations[J]. Atmospheric Research, 2022, 271. DOI:10.1016/j.atmosres.2022.106111 . |
124 | WANG Yufei, QI Yanbin, LI Qian, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer[J]. Journal of Applied Meteorological Science, 2022, 33(4): 442-453. |
王羽飞, 齐彦斌, 李倩, 等. 一次长白山夏季雾的宏微观特征[J]. 应用气象学报, 2022, 33(4): 442-453. | |
125 | DANG Zhangli, SANG Jianren, CHANG Zhuolin, et al. Analysis of macro and microphysical characteristics of two heavy fog in Liupan Mountain area[J]. Ningxia Engineering Technology, 2020, 19(3): 200-210. |
党张利, 桑建人, 常倬林, 等. 六盘山两次大雾过程宏微观物理特征分析[J]. 宁夏工程技术, 2020, 19(3): 200-210. | |
126 | GUO L J, DUAN J, ZHANG X P, et al. Ground-based cloud microphysical observations at Mount Lu in the East Asian monsoon region from 2015 to 2020[J]. Atmospheric Research, 2024, 307. DOI:10.1016/j.atmosres.2024.107482 . |
127 | CHEN Yunbo, BI Kai, MA Xincheng, et al. Observation and analysis of macro and micro characteristics of clouds and fog in winter topography of Haituo Mountain [C]// National weather modification technology and methods exchange conference, 2020: 177-189. |
陈云波, 毕凯, 马新成, 等. 海坨山冬季地形云雾宏微特征观测分析 [C]// 全国人工影响天气技术与方法交流会, 2020: 177-189. | |
128 | FEI D D, NIU S J, YANG J. Analysis of the microphysical structure of structure of radiation fog in Xuanen Mountainous region of Hubei, China[J]. Journal of Tropical Meteorology, 2017, 23(2): 177-190. |
129 | HUDSON J G, NOBLE S. CCN spectral shape and cumulus cloud and drizzle microphysics[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(1). DOI:10.1029/2019JD031141 . |
130 | BEARD K V, OCHS H T III. Warm-rain initiation: an overview of microphysical mechanisms[J]. Journal of Applied Meteorology, 1993, 32(4): 608-625. |
131 | KOROLEV A V. A study of bimodal droplet size distributions in stratiform clouds[J]. Atmospheric Research, 1994, 32(1/2/3/4): 143-170. |
132 | BORQUE P, LUKE E P, KOLLIAS P, et al. Relationship between turbulence and drizzle in continental and marine low stratiform clouds[J]. Journal of the Atmospheric Sciences, 2018, 75(12): 4 139-4 148. |
133 | LU C S, NIU S J, LIU Y G, et al. Empirical relationship between entrainment rate and microphysics in cumulus clouds[J]. Geophysical Research Letters, 2013, 40(10): 2 333-2 338. |
134 | COOPER W A, LASHER-TRAPP S G, BLYTH A M. The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud[J]. Journal of the Atmospheric Sciences, 2013, 70(6): 1 727-1 743. |
135 | SARDINA G, POULAIN S, BRANDT L, et al. Broadening of cloud droplet size spectra by stochastic condensation: effects of mean updraft velocity and CCN activation[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 451-467. |
136 | LU C S, LIU Y G, NIU S J, et al. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence: an overview[J]. Atmospheric and Oceanic Science Letters, 2018, 11(2): 123-135. |
137 | XU Huanbin. Preliminary observation experiment of cloud microstructure fluctuation in Hengshan Mountain[J]. Acta Meteorologica Sinica, 1964, 34(4): 539-547. |
许焕斌. 衡山云雾微结构起伏的初步观测试验[J]. 气象学报, 1964, 34(4): 539-547. | |
138 | GU Zhenchao, ZHAN Lishan. On the growth of the droplets under gravitational coalescence in a fluctuating environment[J]. Acta Meteorological Sinica, 1962, 32(4): 301-307. |
顾震潮, 詹丽珊. 起伏条件下云雾的重力碰并生长[J]. 气象学报, 1962, 32(4): 301-307. | |
139 | ZHOU Xiuji. Statistical theory of microphysical mechanism of warm cloud precipitation[J]. Acta Meteorologica Sinica, 1963, 33(1): 99-109. |
周秀骥. 暖云降水微观物理机制的統計理論[J]. 气象学报, 1963, 33(1): 99-109. | |
140 | YU Xinyang. Study on the correlation between the dispersion of warm cloud droplet spectrum and its number concentration in Huangshan Mountain[D]. Nanjing: Nanjing University of Information Science & Technology, 2018. |
余欣洋. 黄山暖性云雾滴谱离散度与其数浓度相关特征研究[D]. 南京: 南京信息工程大学, 2018. | |
141 | BERA S, PRABHA T V, GRABOWSKI W W. Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(16): 9 767-9 788. |
142 | LIN Hai, GU Zhenchao. Preliminary interpretation of the second largest formation in the cloud droplet spectrum[J]. Chinese Science Bulletin, 1965(10): 923-925. |
林海, 顾震潮. 云滴谱中第二极大形成的初步解释[J]. 科学通报, 1965(10): 923-925. | |
143 | PINSKY M B, KHAIN A P. Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(580): 501-533. |
144 | WANG T S, NIU S J, Lü J J, et al. Observational study on the supercooled fog droplet spectrum distribution and icing accumulation mechanism in Lushan, southeast China[J]. Advances in Atmospheric Sciences, 2019, 36(1): 29-40. |
145 | RASMUSSEN R M, BERNSTEIN B C, MURAKAMI M, et al. The 1990 valentine’s day Arctic outbreak. part I: mesoscale and microscale structure and evolution of a Colorado front range shallow upslope cloud[J]. Journal of Applied Meteorology, 1995, 34(7): 1 481-1 511. |
146 | VAILLANCOURT P A, YAU M K. Review of particle-turbulence interactions and consequences for cloud physics[J]. Bulletin of the American Meteorological Society, 2000, 81(2): 285-298. |
147 | RASMUSSEN R M, GERESDI I, THOMPSON G, et al. Freezing drizzle formation in stably stratified layer clouds: the role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation[J]. Journal of the Atmospheric Sciences, 2002, 59(4): 837-860. |
148 | FERNáNDEZ-GONZáLEZ S, VALERO F, SANCHEZ J L, et al. Observation of a freezing drizzle episode: a case study[J]. Atmospheric Research, 2014, 149: 244-254. |
149 | IGAWA M, WANG Y Z. Characteristics of fog and drizzle in Yokohama and in Mt. oyama, Japan[J]. Water, Air, and Soil Pollution, 2022, 233(12). DOI:10.1007/s11270-022-06012-x . |
150 | CHANG Y, MA Q R, GUO L J, et al. Characteristics of raindrop size distributions during Meiyu season in mount Lushan, Eastern China[J]. Journal of the Meteorological Society of Japan Series II, 2022, 100(1): 57-76. |
151 | GLIENKE S, KOSTINSKI A, FUGAL J, et al. Cloud droplets to drizzle: contribution of transition drops to microphysical and optical properties of marine stratocumulus clouds[J]. Geophysical Research Letters, 2017, 44(15): 8 002-8 010. |
152 | CHANDRAKAR K K, CANTRELL W, CHANG K, et al. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14 243-14 248. |
153 | DORSI S W, SHUPE M D, PERSSON P O G, et al. Phase-specific characteristics of wintertime clouds across a midlatitude mountain range[J]. Monthly Weather Review, 2015, 143(10): 4 181-4 197. |
154 | HENNEBERG O, HENNEBERGER J, LOHMANN U. Formation and development of orographic mixed-phase clouds[J]. Journal of the Atmospheric Sciences, 2017, 74(11): 3 703-3 724. |
155 | RAUBER R M, GRANT L O. The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. part II: spatial distribution and microphysical characteristics[J]. Journal of Climate and Applied Meteorology, 1986, 25(4): 489-504. |
156 | ROGERS D C, VALI G. Ice crystal production by mountain surfaces[J]. Journal of Climate and Applied Meteorology, 1987, 26(9): 1 152-1 168. |
157 | LLOYD G, CHOULARTON T W, BOWER K N, et al. The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 12 953-12 969. |
158 | GEERTS B, POKHAREL B, KRISTOVICH D A R. Blowing snow as a natural glaciogenic cloud seeding mechanism[J]. Monthly Weather Review, 2015, 143(12): 5 017-5 033. |
159 | HENNEBERGER J, FUGAL J P, STETZER O, et al. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2 975-2 987. |
/
〈 |
|
〉 |