综述与评述

沉积源—汇系统数值模拟研究进展:多模型比较与应用

  • 何锦秋 ,
  • 李海鹏 ,
  • 侯明才
展开
  • 1.成都理工大学 沉积地质研究院,四川 成都 610059
    2.苏州深时数字地球研究中心,江苏 昆山 215347
    3.浙江深时数字地球国际研究中心,浙江 杭州 311121
    4.深时地理环境重建与应用自然资源部重点实验室,四川 成都 610059
何锦秋,主要从事沉积学研究. E-mail:2022050768@stu.cdut.edu.cn
李海鹏,主要从事沉积源—汇系统与古地理重建研究. E-mail:haipeng.geo@gmail.com

收稿日期: 2024-07-05

  修回日期: 2024-10-18

  网络出版日期: 2025-01-17

基金资助

国家自然科学基金青年科学基金项目(42302133);江苏省重大科技开放合作平台建设项目(BZ2022057)

Advances in Numerical Simulation Research of Source-to-Sink Systems: Comparison and Application of Multiple Models

  • Jinqiu HE ,
  • Haipeng LI ,
  • Mingcai HOU
Expand
  • 1.Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
    2.Suzhou Deep-time Digital Earth Research Center, Kunshan Jiangsu 215347, China
    3.Deep-time Digital Earth Research Center of Excellence, Zhejiang, Hangzhou 311121, China
    4.Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu 610059, China
HE Jinqiu, research area includes sedimentology. E-mail: 2022050768@stu.cdut.edu.cn
LI Haipeng, research areas include sediment source-to-sink systems and paleogeographic reconstruction. E-mail: li.haipeng@ddeworld.org

Received date: 2024-07-05

  Revised date: 2024-10-18

  Online published: 2025-01-17

Supported by

National Natural Science Foundation of China(42302133);The Jiangsu Province Major Technological Open Cooperation Platform Construction Project(BZ2022057)

摘要

沉积源—汇系统研究通过分析物质从源到汇的全过程,旨在揭示地表动态变化、物质循环机制及其对环境变化的响应,有助于我们全面了解沉积物从母岩风化、剥蚀、搬运至最终沉积的复杂过程。传统的源—汇研究多依赖于野外地质观测和实验室分析,这些方法受限于数据的可获取性较差、时空分辨率低和多解性,难以捕捉过程的动态变化和长期、大尺度的系统演化。随着计算机软硬件的飞速发展,数值模拟已成为源—汇研究的重要工具。数值模拟能够弥补传统方法的不足,定量分析沉积物在不同环境条件下的侵蚀、搬运和沉积过程,从而提供更全面、更动态的沉积源—汇系统演化视图。重点介绍5种主流的沉积源—汇系统数值模拟工具:Dionisos、SEDSIM、Landlab、goSPL和Delft3D。这些工具各具特点,适用于不同的研究场景。Dionisos擅长模拟大尺度、长时间跨度的沉积盆地充填过程,但结果趋于平均化,不擅长小尺度的动态变化模拟;SEDSIM基于水动力方程精准模拟沉积过程,结果更符合实际情况,但模拟速度较慢,更多集中于碎屑岩沉积模拟;Landlab提供高度自定义和多过程耦合的模拟能力,适合多种研究需求,但需要用户有较强的编程能力;goSPL能够进行全球尺度的高分辨率源—汇过程模拟,但处理局部地质现象时存在局限,同时对计算资源要求较高;而Delft3D在小尺度精细模拟方面表现优越,广泛应用于海岸、河流和湖泊环境模拟,但对于大尺度模拟存在一定的局限性。未来,随着算力的进一步增强和算法模型的优化,预计将出现更多高精度、多过程耦合的模拟工具。同时,大数据和人工智能技术在源—汇研究中的应用将成为重要趋势,也将更好地助力源—汇模拟,推动该领域的多学科融合和智能化发展。

本文引用格式

何锦秋 , 李海鹏 , 侯明才 . 沉积源—汇系统数值模拟研究进展:多模型比较与应用[J]. 地球科学进展, 2024 , 39(11) : 1136 -1155 . DOI: 10.11867/j.issn.1001-8166.2024.081

Abstract

The study of Source-to-Sink systems is an important field of research focused on understanding the entire process of material transport from source areas like mountain ranges or other landforms to sink areas like river basins, lakes, and oceans. This process entails weathering of the parent rock, erosion of materials, transportation via various agents (such as wind, water, or ice), and eventual deposition at sink locations. Analyzing this system reveals dynamic surface changes, material cycling mechanisms, and how these processes adapt to environmental shifts over time. Understanding these complex processes is crucial for a variety of scientific fields, including geomorphology, environmental science, and natural resource management; however, the traditional methods such as field observations and laboratory analyses, Have their own set of challenges. Data availability, low spatiotemporal resolution, and ambiguity in interpretation make it difficult to capture the rapid and dynamic changes occurring in natural systems. Furthermore, these methods are not ideally suited for analyzing long-term evolutionary processes or large-scale systems. Consequently, numerical modeling has emerged as an essential tool studying source-to-sink systems, addressing these traditional limitations by simulating complex processes over varying spatial and temporal scales. They offer more quantitative insights into the dynamics of erosion, transport, and deposition under different environmental conditions.This paper reviews five key numerical tools commonly used in source-to-sink research: Dionisos, SEDSIM, Landlab, goSPL, and Delft3D. Each tool has specific advantages that render it suitable for various research purposes. Dionisos, for instance, excels at modeling large-scale, long-term basin-filling processes though it is less effective for simulating small-scale, dynamic changes. SEDSIM, based on hydrodynamic equations, produces highly accurate results for clastic sedimentary processes, but tends to be slower and more focused on specific types of sediment. LandLab is highly customizable and capable of multi-process simulations; although, it requires advanced programming skills. goSPL handles global-scale high-resolution simulations effectively, despite struggling with localized phenomena and requiring significant computational resources. Delft3D is ideal for small-scale, fine-detail simulations, particularly in coastal, riverine, and lacustrine environments, although it faces challenges in large-scale applications. With ongoing advances in computational power and algorithms, future advancements in source-to-sink modeling are expected. The integration of big data and AI will likely enhance the accuracy of predictions, facilitate multidisciplinary integration, and drive the intelligent evolution of the field.

参考文献

1 TAN Mingxuan, ZHU Xiaomin, ZHANG Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “Source-to-Sink” systems[J]. Natural Gas and Oil, 2020, 41(5): 1 107-1 118.
1 谈明轩, 朱筱敏, 张自力, 等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质, 2020, 41(5): 1 107-1 118.
2 XIE Xinong, LIN Changsong, LI Zhong, et al. Research reviews and prospects of sedimentary basin geodynamics in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 877-887.
2 解习农, 林畅松, 李忠, 等. 中国盆地动力学研究现状及展望[J]. 沉积学报, 2017, 35(5): 877-887.
3 XIE Xinong, REN Jianye, LEI Chao. Reviews and prospects of depositional basin dynamics[J]. Bulletin of Geological Science and Technology, 2012, 31(5): 76-84.
3 解习农, 任建业, 雷超. 盆地动力学研究综述及展望[J]. 地质科技情报, 2012, 31(5): 76-84.
4 LIU Qianghu, LI Zhiyao, CHEN Hehe, et al. Key geological issues and innovation directions in deep-time Source-to-Sink system of continental rift basins[J]. Earth Science, 2023, 48(12): 4 586-4 612.
4 刘强虎, 李志垚, 陈贺贺, 等. 陆相裂陷盆地深时源—汇系统关键地质问题及革新方向[J]. 地球科学, 2023, 48(12): 4 586-4 612.
5 TOFELDE S, BERNHARDT A, GUERIT L, et al. Times associated with Source-to-Sink propagation of environmental signals during landscape transience[J]. Frontiers in Earth Science, 2021, 9. DOI: 10.3389/feart.2021.628315 .
6 GUERIT L, BARRIER L, JOLIVET M, et al. Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment-alluvial fan systems[J]. Earth Surface Processes and Landforms, 2016, 41(8): 1 088-1 106.
7 MASON C C, ROMANS B W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be: Panamint Valley, California[J]. Earth and Planetary Science Letters, 2018, 492: 130-143.
8 JONELL T N, CLIFT P D, HOANG L V, et al. Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam[J]. Basin Research, 2017, 29(): 659-683.
9 ALIZAI A, CLIFT P D, STILL J. Indus Basin sediment provenance constrained using garnet geochemistry[J]. Journal of Asian Earth Sciences, 2016, 126: 29-57.
10 BARKACH J H, MILLER C J, SELEGEAN J P, et al. Comparison of watershed sediment delivery estimates of 60 Michigan Rivers using the USACE Great Lakes regional trend line and the Syvitski and Milliman global BQART equation[J]. Journal of Hydrology, 2020, 582. DOI: 10.1016/j.jhydrol.2019.124460 .
11 MICHAEL N A, WHITTAKER A C, CARTER A, et al. Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south-central Pyrenees[J]. Geological Society of America Bulletin, 2014, 126(3/4): 585-599.
12 HILTON R G, WEST A J. Mountains, erosion and the carboncycle[J]. Nature Reviews Earth & Environment, 2020, 1: 284-299.
13 LASAGA A C, SOLER J M, GANOR J, et al. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmochimica Acta, 1994, 58(10): 2 361-2 386.
14 MILLIMAN J D, SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544.
15 RICHTER F M, ROWLEY D B, DEPAOLO D J. Sr isotope evolution of seawater: the role of tectonics[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 11-23.
16 DIETZE E, MAUSSION F, AHLBORN M, et al. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments[J]. Climate of the Past, 2014, 10(1): 91-106.
17 DIBIASE R A, LAMB M P. Vegetation and wildfire controls on sediment yield in bedrock landscapes[J]. Geophysical Research Letters, 2013, 40(6): 1 093-1 097.
18 TOFELDE S, SAVI S, WICKERT A D, et al. Alluvial channel response to environmental perturbations: fill-terrace formation and sediment-signal disruption[J]. Earth Surface Dynamics, 2019, 7(2): 609-631.
19 WATKINS S E, WHITTAKER A C, BELL R E, et al. Straight from the source’s mouth: controls on field-constrained sediment export across the entire active Corinth Rift, central Greece[J]. Basin Research, 2020, 32(6): 1 600-1 625.
20 LI Y T, CLIFT P D, B?NING P, et al. Continuous Holocene input of river sediment to the Indus Submarine Canyon[J]. Marine Geology, 2018, 406: 159-176.
21 CHURCH M. Geomorphic thresholds in riverine landscapes[J]. Freshwater Biology, 2002, 47(4): 541-557.
22 JEROLMACK D J, PAOLA C. Shredding of environmental signals by sediment transport[J]. Geophysical Research Letters, 2010, 37(19). DOI: 10.1029/2010GL044638 .
23 ALLEN J P. The attachment system in adolescence[M]. New York: The Guilford Press, 2008.
24 ARMITAGE S J, JASIM S A, MARKS A E, et al. The southern route “out of Africa”: evidence for an early expansion of modern humans into Arabia[J]. Science, 2011, 331(6 016): 453-456.
25 COULTHARD T J, van de WIEL M J. Climate, tectonics or morphology: what signals can we see in drainage basin sediment yields?[J]. Earth Surface Dynamics, 2013, 1(1): 13-27.
26 ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
27 HOUSSAIS M, JEROLMACK D J. Toward a unifying constitutive relation for sediment transport across environments[J]. Geomorphology, 2017, 277: 251-264.
28 AMOS C L, JUDGE J T. Sediment transport on the eastern Canadian continental shelf[J]. Continental Shelf Research, 1991, 11(8/9/10): 1 037-1 068.
29 PHILLIPS C B, JEROLMACK D J. Self-organization of river channels as a critical filter on climate signals[J]. Science, 2016, 352(6 286): 694-697.
30 D’ARCY M, RODA-BOLUDA D C, WHITTAKER A C. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California[J]. Quaternary Science Reviews, 2017, 169: 288-311.
31 BATAILLE C P, RIDGWAY K D, COLLIVER L, et al. Early Paleogene fluvial regime shift in response to global warming: a subtropical record from the Tornillo Basin, West Texas, USA[J]. GSA Bulletin, 2019, 131(1/2): 299-317.
32 BROMMER M B, WELTJE G J, TRINCARDI F. Reconstruction of sediment supply from mass accumulation rates in the northern Adriatic Basin (Italy) over the past 19, 000 years[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2). DOI: 10.1029/2008JF000987 .
33 RIMSTIDT J D, CHERMAK J A, SCHREIBER M E. Processes that control mineral and element abundances in shales[J]. Earth-Science Reviews, 2017, 171: 383-399.
34 MADOF A S, HARRIS A D, CONNELL S D. Nearshore along-strike variability: is the concept of the systems tract unhinged?[J]. Geology, 2016, 44(4): 315-318.
35 DRAUT A E, CLIFT P D. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes[J]. Earth-Science Reviews, 2013, 116: 57-84.
36 PETTER A L, STEEL R J, MOHRIG D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. Geological Society of America Bulletin, 2013, 125(3/4): 578-593.
37 CHEN X Y, ZHANG Z J, YUAN X J, et al. The evolution of Permian Source-to-Sink systems and tectonics implications in the NW Junggar Basin, China: evidence from detrital zircon geochronology[J]. Minerals, 2022, 12(9). DOI: 10.3390/min12091169 .
38 ALLEN P A. Sediment routing systems: the fate of sediment from Source to Sink[M]. Cambridge: Cambridge University Press, 2017.
39 ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451: 274-276.
40 ZHU Xiaomin, LIU Qianghu, TAN Mingxuan, et al. Comprehensive investigation of deep-time Source-to-Sink systems: case study of the Shaleitian area[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1 781-1 797.
40 朱筱敏, 刘强虎, 谈明轩, 等. 深时源—汇系统综合研究和沙垒田实例分析[J]. 沉积学报, 2023, 41(6): 1 781-1 797.
41 SHAO Longyi, WANG Xuetian, LI Yanan, et al. Review on palaeogeographic reconstruction of deep-time Source-to-Sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81.
41 邵龙义, 王学天, 李雅楠, 等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报, 2019, 21(1): 67-81.
42 SYVITSKI J P M, MILLIMAN J D. Daniel[J]. The Journal of Geology, 2007, 115(1): 1-19.
43 BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems: insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169.
44 S?MME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in Source-to-Sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387.
45 ROMANS B W, GRAHAM S A. A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 2013, 5: 69-94.
46 COVAULT J A, ROMANS B W, GRAHAM S A, et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: insights from tectonically active southern California[J]. Geology, 2011, 39(7): 619-622.
47 HELLAND-HANSEN W, S?MME T O, MARTINSEN O J, et al. Deciphering Earth’s natural hourglasses: perspectives on Source-to-Sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1 008-1 033.
48 ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130.
49 ALLEN P A. Time scales of tectonic landscapes and their sediment routing systems[J]. Geological Society, London, Special Publications, 2008, 296(1): 7-28.
50 MEADE R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3): 235-252.
51 MEADE R H. Transport and deposition of sediments in estuaries[M]. Colorado: Geological Society of America, 1972.
52 WALSH J P, WIBERG P L, AALTO R, et al. Source-to-Sink research: economy of the Earth’s surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6.
53 TUCKER G E, HUTTON E W H, PIPER M D, et al. CSDMS: a community platform for numerical modeling of Earth surface processes[J]. Geoscientific Model Development, 2022, 15(4): 1 413-1 439.
54 TUCKER G E, SLINGERLAND R, SYVITSKI J. A community approach to modeling earthscapes[M]. Oxford: Academic Press, 2022.
55 XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11.
55 徐长贵. 陆相断陷盆地源—汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4): 1-11.
56 WANG Chengshan, LIN Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1 217-1 229.
56 王成善, 林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报, 2021, 40(6): 1 217-1 229.
57 GONG Chenglin, LIU Li, SHAO Dali, et al. Depositional patterns of the Bengal-Nicobar Fan system since the Late Mio-cene: seesaw-like stepwise changes and the source-sink model[J]. Earth Science Frontiers, 2022, 29(4): 25-41.
57 龚承林, 刘力, 邵大力, 等. 晚中新世以来孟加拉—尼科巴扇跷跷板式沉积转换及其源—汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41.
58 LIANG W D, GARZANTI E, HU X M, et al. Tracing erosion patterns in South Tibet: balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block[J]. Basin Research, 2022, 34(1): 411-439.
59 LIU Li, ZHU Dicheng, ZHANG Liangliang, et al. To decipher the “Source-to-Sink” system using the depth profile of zircon ages[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1 135-1 144.
59 刘力, 朱弟成, 张亮亮, 等. 用锆石年龄的深度剖面来重新认识源—汇系统[J]. 矿物岩石地球化学通报, 2022, 41(6): 1 135-1 144.
60 ZHANG J Y, SYLVESTER Z, COVAULT J. How do basin margins record long-term tectonic and climatic changes?[J]. Geology, 2020, 48(9): 893-897.
61 GONG C L, STEEL R J, WANG Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101.
62 MARTINSEN O J, S?MME T O, THURMOND J B, et al. Source-to-Sink systems on passive margins: theory and practice with an example from the Norwegian continental margin[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7(1): 913-920.
63 SUN Shu, WANG Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-810.
63 孙枢, 王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报, 2009, 27(5): 792-810.
64 GU Xiaozhong, MA Liqiao. Numerical simulation of a delta depositional system and it’s applications[J].Acta Petrolei Sinica, 1993, 14(2): 1-11.
64 顾晓忠, 马立桥. 三角洲沉积体系的数值模拟及其应用[J]. 石油学报, 1993,14(2): 1-11.
65 WOLF L, HUISMANS R S, ROUBY D, et al. Links between faulting, topography, and sediment production during continental rifting: insights from coupled surface process, thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(3). DOI: 10.1029/2021JB023490 .
66 GéRARD B, ROUBY D, HUISMANS R S, et al. Impact of inherited foreland relief on retro-foreland basin architecture[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3). DOI:10.1029/2022JB024967 .
67 ZOU Bo, WANG Guozhi, DENG Jianghong. Evidence for apatite fission track of Pliocene rapid uplift of Zhongdian region on southeastern margin of Tibetan Plateau,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 227-236.
67 邹波, 王国芝, 邓江红. 青藏高原东南缘中甸地区上新世快速隆升的磷灰石裂变径迹证据[J]. 成都理工大学学报(自然科学版), 2014, 41(2): 227-236.
68 YANG Shouye, WANG Zhongbo. Rare earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39.
68 杨守业, 王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报, 2011, 30(1): 31-39.
69 SHARMA S, BHATTACHARYA J P, RICHARDS B. Source-to-sink sediment budget analysis of the Cretaceous ferron sandstone, Utah, U.S.A., using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87(6): 594-608.
70 ZHU Hongtao, YANG Xianghua, ZHOU Xinhuai, et al. Sediment transport pathway characteristics of continental lacustrine basins based on 3-D seismic data: an example from Dongying Formation of western slope of Bozhong sag[J]. Earth Science, 2013, 38(1): 121-129.
70 朱红涛, 杨香华, 周心怀, 等. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例[J]. 地球科学, 2013, 38(1): 121-129.
71 TANG Wu, XIE Xiaojun, XIONG Lianqiao, et al. Coupling relationship and genetic mechanisms of shelf-edge delta and deep-water fan Source-to-Sink: a case study in Paleogene Zhuhai Formation in south subsag of Baiyun Sag, Pearl River Mouth Basin, China[J]. Petroleum Exploration and Development, 2024, 51(3): 513-525.
71 唐武, 谢晓军, 熊连桥, 等. 陆架边缘三角洲—深水扇源汇耦合关系及成因机制[J]. 石油勘探与开发, 2024, 51(3): 513-525.
72 YANG S Y, JUNG H S, LIM D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93-120.
73 MANDAL S K, KAPANNUSCH R, SCHERLER D, et al. Cosmogenic nuclide tracking of sediment recycling from a frontal siwalik range in the northwestern Himalaya[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(12). DOI: 10.1029/2023JF007164 .
74 ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the Source-to-Sink units and coupling model research in continental basin[J]. Journal of Earth Science, 2017, 42(11): 1 851-1 870.
74 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1 851-1 870.
75 SALLES T. eSCAPE: regional to global scale landscape evolution model v2.0[J]. Geoscientific Model Development, 2019, 12(9): 4 165-4 184.
76 CAMPFORTS B, SHOBE C M, STEER P, et al. HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution[J]. Geoscientific Model Development, 2020, 13(9): 3 863-3 886.
77 CHEN H, WANG X Y, LU H Y, et al. Anthropogenic impacts on Holocene fluvial dynamics in the Chinese Loess Plateau, an evaluation based on landscape evolution modeling[J]. Geomorphology, 2021, 392. DOI: 10.1016/j.geomorph.2021.107935 .
78 GARCIA-ESTèVE C, CANIVEN Y, CATTIN R, et al. Morphotectonic evolution of an alluvial fan: results of a joint analog and numerical modeling approach[J]. Geosciences, 2021, 11(10). DOI: 10.3390/geosciences11100412 .
79 BARNHART K R, GLADE R C, SHOBE C M, et al. Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution[J]. Geoscientific Model Development, 2019, 12(4): 1 267-1 297.
80 HUTTON E W H, SYVITSKI J P M. Sedflux 2.0: an advanced process-response model that generates three-dimensional stratigraphy[J]. Computers & Geosciences, 2008, 34(10): 1 319-1 337.
81 LIN Chengyan, CHEN Bingyi, REN Lihua, et al. A review of depositional numerical simulation and a case study[J]. Acta Geologica Sinica, 2023, 97(8): 2 756-2 773.
81 林承焰, 陈柄屹, 任丽华, 等. 沉积数值模拟研究现状及实例[J]. 地质学报, 2023, 97(8): 2 756-2 773.
82 HARRIS A D, COVAULT J A, BAUMGARDNER S, et al. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: sea-level modulation of deltaic avulsion processes[J]. Marine and Petroleum Geology, 2020, 111: 807-814.
83 HAWIE N, DESCHAMPS R, GRANJEON D, et al. Multi-scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modelling case study of the Levant region[J]. Basin Research, 2017, 29(): 418-445.
84 CSATO I, GRANJEON D, CATUNEANU O, et al. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary[J]. Basin Research, 2013, 25(2): 121-148.
85 TAMIRU H, DINKA M O. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 2021, 36. DOI: 10.1016/j.ejrh.2021.100855 .
86 TUCKER G, LANCASTER S, GASPARINI N, et al. The Channel-Hillslope Integrated Landscape Development model (CHILD)[M]. Boston, MA: Springer US, 2001.
87 LI H P, PLINK-BJ?RKLUND P. Applying information theory and Bayesian inference to paleoenvironmental interpretation[J]. Geophysical Research Letters, 2019, 46(24): 14 477-14 485.
88 SALLES T, DING X S, BROCARD G. pyBadlands: a framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time[J]. PLoS ONE, 2018, 13(4). DOI: 10.1371/journal.pone.019555 .
89 COULTHARD T J, MACKLIN M G, KIRKBY M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27(3): 269-288.
90 TUCKER G E, SLINGERLAND R L. Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 12 229-12 243.
91 GAILLETON B, MALATESTA L C, CORDONNIER G, et al. CHONK 1.0: landscape evolution framework: cellular automata meets graph theory[J]. Geoscientific Model Development, 2024, 17(1): 71-90.
92 DENSMORE A L, ELLIS M A, ANDERSON R S. Landsliding and the evolution of normal-fault-bounded mountains[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B7): 15 203-15 219.
93 WANG Xuetian, SHAO Longyi, KENNETH A E, et al. Using BQART model to reconstruct paleo-relief in deep time based on quantitative paleogeography: a case study from the Late Permian central Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1 461-1 480.
93 王学天, 邵龙义, Kenneth A E, 等. 基于定量古地理的BQART模型深时古地势重建方法: 以晚二叠世峨眉山大火成岩省内带为例[J]. 沉积学报, 2022, 40(6): 1 461-1 480.
94 GARCIA-CASTELLANOS D, JIMéNEZ-MUNT I. Topographic evolution and climate aridification during continental collision: insights from computer simulations[J]. PLoS ONE, 2015, 10(8). DOI: 10.1371/journal.pone.0132252 .
95 HANCOCK G, WILLGOOSE G. Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: declining equilibrium landforms[J]. Water Resources Research, 2001, 37(7): 1 981-1 992.
96 HARBAUGH J W. Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations[M]. Tulsa, Okla: SEPM (Society for Sedimentary Geology), 1999.
97 GRANJEON D. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys[J]. International Association of Sedimentologists, 2014, 46: 453-472.
98 HARRIS A D, BAUMGARDNER S E, SUN T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51.
99 HARRIS A D, COVAULT J A, MADOF A S, et al. Three-dimensional numerical modeling of eustatic control on continental-margin sand distribution[J]. Journal of Sedimentary Research, 2016, 86(12): 1 434-1 443.
100 LIU Yanfeng, DUAN Taizhong, HUANG Yuan, et al. Deep learning-based geological modeling driven by sedimentary process simulation[J]. Natural Gas and Oil, 2023(1): 226-237.
100 刘彦锋, 段太忠, 黄渊, 等. 沉积过程模拟驱动下的深度学习地质建模方法[J]. 石油与天然气地质, 2023(1): 226-237.
101 GVIRTZMAN Z, CSATO I, GRANJEON D. Constraining sediment transport to deep marine basins through submarine channels: the Levant margin in the Late Cenozoic[J]. Marine Geology, 2014, 347: 12-26.
102 BUSSON J, JOSEPH P, MULDER T, et al. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: controls and dynamic of the progradation[J]. Sedimentary Geology, 2019, 379: 77-96.
103 HAWIE N, COVAULT J A, SYLVESTER Z. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models[J]. Frontiers in Earth Science, 2019, 7. DOI: 10.3389/feart.2019.00334 .
104 ZHANG Zhijie, ZHOU Chuanmin, YUAN Xuanjun, et al. Source-to-Sink system and palaeogeographic reconstruction of Permian in the Junggar Basin, northwestern China[J]. Acta Geologica Sinica, 2023, 97(9): 3 006-3 023.
104 张志杰, 周川闽, 袁选俊, 等. 准噶尔盆地二叠系源—汇系统与古地理重建[J]. 地质学报, 2023, 97(9): 3 006-3 023.
105 BRUNEAU B, CHAUVEAU B, BAUDIN F, et al. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities[J]. Marine and Petroleum Geology, 2017, 82: 1-20.
106 YIN X D, HUANG W H, LU S F, et al. The connectivity of reservoir sand bodies in the Liaoxi Sag, Bohai Bay Basin: insights from three-dimensional stratigraphic forward modeling[J]. Marine and Petroleum Geology, 2016, 77: 1 081-1 094.
107 GRIFFITHS C M, DYT C, PARASCHIVOIU E, et al. Sedsim in hydrocarbon exploration[M]. Boston, MA: Springer, 2001.
108 HUANG X, DYT C, GRIFFITHS C, et al. Numerical forward modelling of ‘fluxoturbidite’ flume experiments using Sedsim[J]. Marine and Petroleum Geology, 2012, 35(1): 190-200.
109 SALLES T, MARCHèS E, DYT C, et al. Simulation of the interactions between gravity processes and contour currents on the Algarve Margin (South Portugal) using the stratigraphic forward model Sedsim[J]. Sedimentary Geology, 2010, 229(3): 95-109.
110 YANG Qian, FENG Xiuli, LI Mengshuai. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea[J]. Acta Geologica Sinica, 2022, 96(4): 1 412-1 420.
110 杨茜, 冯秀丽, 李梦帅. 南海北部莺琼陆坡浊流沉积数值模拟分析[J]. 地质学报, 2022, 96(4): 1 412-1 420.
111 RAVESTEIN J J, GRIFFITHS C M, DYT C P, et al. Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2 [J]. Terra Nova, 2015, 27(5): 346-355.
112 LIU Jianliang, LIU Keyu. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling[J]. Science China: Earth Sciences, 2020, 51(1): 150-158.
112 刘建良, 刘可禹. 碳酸盐岩地层完整性分析及其影响因素定量评价:来自地层正演模拟的启示[J]. 中国科学: 地球科学, 2020, 51(1): 150-158.
113 HUANG Xiu, LIU Keyu, ZOU Caineng, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang Lake, southern China[J]. Earth Science, 2013, 38(5): 1 005-1 013.
113 黄秀, 刘可禹, 邹才能, 等. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟[J]. 地球科学, 2013, 38(5): 1 005-1 013.
114 HOBLEY D E J, ADAMS J M, NUDURUPATI S S, et al. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics[J]. Earth Surface Dynamics, 2017, 5(1): 21-46.
115 BANDARAGODA C, CASTRONOVA A, ISTANBULLUOGLU E, et al. Enabling collaborative numerical modeling in Earth sciences using knowledge infrastructure[J]. Environmental Modelling & Software, 2019, 120. DOI: 10.1016/j.envsoft.2019.03.020 .
116 BARNHART K R, HUTTON E W H, TUCKER G E, et al. Short communication: Landlabv2.0: a software package for Earth surface dynamics[J]. Earth Surface Dynamics, 2020, 8(2): 379-397.
117 PFEIFFER A, BARNHART K, CZUBA J, et al. NetworkSedimentTransporter: a Landlab component for bed material transport through river networks[J]. Journal of Open Source Software, 2020, 5(53). DOI: 10.21105/joss.02341 .
118 SALLES T, HUSSON L, LORCERY M, et al. Landscape dynamics and the Phanerozoic diversification of the biosphere[J]. Nature, 2023, 624: 115-121.
119 SALLES T, HUSSON L, REY P, et al. Hundred million years of landscape dynamics from catchment to global scale[J]. Science, 2023, 379(6 635): 918-923.
120 SALLES T, MALLARD C, ZAHIROVIC S. Gospl: global scalable paleo landscape evolution[J]. Journal of Open Source Software, 2020, 5(56). DOI: 10.21105/joss.02804 .
121 SUO Yanhui, FU Xinjian, LI Sanzhong, et al. Review on dynamic simulation of paleo-landscape[J]. Journal of Palaeogeography, 2024, 26(1): 165-171.
121 索艳慧, 付新建, 李三忠, 等. 古地貌动态模拟研究进展综述[J]. 古地理学报, 2024, 26(1): 165-171.
122 HU K L, DING P X, WANG Z B, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China[J]. Journal of Marine Systems, 2009, 77(1/2): 114-136.
123 COOPER C, EIDAM E, SEIM H, et al. Effects of sea ice on Arctic delta evolution: a modeling study of the Colville River delta, Alaska[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(9). DOI: 10.1029/2024JF007742 .
124 WANG J, CHU A, DAI Z J, et al. Delft3D model-based estuarine suspended sediment budget with morphodynamic changes of the channel-shoal complex in a mega fluvial-tidal delta[J]. Engineering Applications of Computational Fluid Mechanics, 2024, 18(1). DOI: 10.1080/19942060.2023.2300763 .
125 TANG Hong, LONG Guanyu, ZHANG Zhang, et al. Sedimentary characteristics and evolution laws of a sandy braided river delta based on sediment numerical simulation[J]. Acta Sedimentologica Sinica, 2024. DOI:10.14027/j.issn.1000-0550.2024.088 .
125 唐洪, 龙冠宇, 张章, 等. 基于沉积数值模拟的砂质辫状河三角洲沉积特征与演化规律研究[J].沉积学报, 2024. DOI:10.14027/j.issn.1000-0550.2024.088 .
126 HUANG X, GRIFFITHS C M, LIU J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919.
127 WANG Yangjun, YIN Taiju, DENG Zhihao, et al. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics[J]. Bulletin of Geological Science and Technology, 2016, 35(1): 44-52.
127 王杨君, 尹太举, 邓智浩, 等. 水动力数值模拟的河控三角洲分支河道演化研究[J]. 地质科技情报, 2016, 35(1): 44-52.
128 LESSER G R, ROELVINK J A, van KESTER J A T M, et al. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering, 2004, 51(8): 883-915.
129 STEVENS A W, MORITZ H R, ELIAS E P L, et al. Monitoring and modeling dispersal of a submerged nearshore berm at the mouth of the Columbia River, USA[J]. Coastal Engineering, 2023, 181. DOI: 10.1016/j.coastaleng.2023.104285 .
130 ALOSAIRI Y, ALSULAIMAN N. Hydro-environmental processes governing the formation of hypoxic parcels in an inverse estuarine water body: model validation and discussion[J]. Marine Pollution Bulletin, 2019, 144: 92-104.
131 TROOST T A, DESCLAUX T, LESLIE H A, et al. Do microplastics affect marine ecosystem productivity?[J]. Marine Pollution Bulletin, 2018, 135: 17-29.
132 BERGEN K J, JOHNSON P A, de HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6 433). DOI: 10.1126/science.aau0323 .
133 XU Changgui, DU Xiaofeng, XU Wei, et al. New advances of the “Source-to-Sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11.
133 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地“源—汇”系统研究新进展[J]. 石油与天然气地质, 2017, 38(1): 1-11.
文章导航

/