收稿日期: 2024-09-10
修回日期: 2024-10-02
网络出版日期: 2025-01-17
基金资助
国家自然科学基金项目(42375008);北京市自然科学基金项目(8222079);安徽省自然科学基金江淮气象联合基金项目(2208085UQ11)
Research Progress on the Spatial and Temporal Distribution, Formation Mechanism and Forecasting Methods of Severe Convective Winds
Received date: 2024-09-10
Revised date: 2024-10-02
Online published: 2025-01-17
Supported by
the National Natural Science Foundation of China(42375008);The Beijing Municipal Natural Science Foundation(8222079);Jianghuai Meteorological Joint Project of Anhui Natural Science Foundation(2208085UQ11)
雷暴大风是预报难度较大的强对流天气之一,为了提高对雷暴大风形成机理的认识和预报准确率,对国内外雷暴大风和相关对流系统的形成机理与预报方法的重要成果进行了回顾。简要介绍了世界上雷暴大风的时空分布特征,中国的雷暴大风主要发生在东部地区,华北北部、东北中南部和广东为高发区。概述了产生雷暴大风的母对流系统的组织类型、结构特征以及雷暴大风的形成机制:飑线和弓状回波是产生雷暴大风的主要对流系统之一,且容易产生强雷暴大风;飑线或者弓状回波中的后向入流、γ-中尺度涡旋等系统是产生地面大风的重要结构特征。总结了雷暴大风发生的大气环境条件和预报方法:大气环境的有关热力和动力因子都会影响雷暴大风的产生和强度,但对流活动的强度主要依赖于对流有效位能和垂直风切变的共变关系;数值预报、基于物理理解的方法(配料法)和深度学习/机器学习方法是目前在雷暴大风的短临、短期预报业务中采用的主要方法。最后指出针对我国雷暴大风,在精细的时空分布特征、不同大气环境条件下形成机理和预报方法等方面仍有待进一步研究。
孙建华 , 田付友 , 夏茹娣 , 郑淋淋 , 黄玥 . 雷暴大风的时空分布、形成机理和预报方法研究进展[J]. 地球科学进展, 2024 , 39(11) : 1097 -1111 . DOI: 10.11867/j.issn.1001-8166.2024.082
Significant advances in the formation mechanism and forecasting methods of severe convective winds and related convective systems were reviewed to improve understanding of the formation mechanism and forecast accuracy of severe convective winds. First, the spatial and temporal distribution characteristics of severe convective winds worldwide are briefly described. Next, the relationship between the organizational types and structural features of the parent convective systems that generate severe convective winds is then summarized, as well as the impact of atmospheric environmental conditions and topography, and forecasting methods. Finally, the current issues and future research directions associated with severe convective winds are discussed.
1 | SMITH B T, THOMPSON R L, GRAMS J S, et al. Convective modes for significant severe thunderstorms in the contiguous United States. part I: storm classification and climatology[J]. Weather and Forecasting, 2012, 27(5): 1 114-1 135. |
2 | JOHNS R H, HIRT W D. Derechos: widespread convectively induced windstorms[J]. Weather and Forecasting, 1987, 2(1): 32-49. |
3 | PACEY G P, SCHULTZ D M, GARCIA-CARRERAS L. Severe convective windstorms in Europe: climatology, preconvective environments, and convective mode[J]. Weather and Forecasting, 2021, 36(1): 237-252. |
4 | YU Xiaoding, ZHENG Yongguang. Advances in severe convective weather research and operational service in China [J]. Acta Meteorologica Sinica,2020, 78(3): 391-418. |
4 | 俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展[J].气象学报,2020, 78(3): 391-418. |
5 | MENG Z Y, YAO D, BAI L Q, et al. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations[J]. Science Bulletin, 2016, 61(4): 330-337. |
6 | ZHENG Yongguang, TIAN Fuyou, MENG Zhiyong, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship “Dongfangzhixing”[J]. Meteorological Monthly, 2016, 42(1): 1-13. |
6 | 郑永光, 田付友, 孟智勇, 等. “东方之星” 客轮翻沉事件周边区域风灾现场调查与多尺度特征分析[J]. 气象, 2016, 42(1): 1-13. |
7 | SHENG Jie, ZHENG Yongguang, SHEN Xinyong, et al. Evolution and mechanism of a rare squall line in early spring of 2018[J]. Meteorological Monthly, 2019, 45(2): 141-154. |
7 | 盛杰, 郑永光, 沈新勇, 等. 2018年一次罕见早春飑线大风过程演变和机理分析[J]. 气象, 2019, 45(2): 141-154. |
8 | HOU Shumei, LI Yuwei, ZHANG Peng, et al. Cause of a thunderstorm gale event over grade 10 along the Shandong coast on 29 April 2021[J]. Meteorological Monthly, 2022, 48(10): 1 242-1 256. |
8 | 侯淑梅,李昱薇,张鹏,等. “4.29”山东近海10级以上雷暴大风的成因分析[J]. 气象, 2022, 48(10): 1 242-1 256. |
9 | KELLY D L, SCHAEFER J T, DOSWELL C A III. Climatology of nontornadic severe thunderstorm events in the United States[J]. Monthly Weather Review, 1985, 113(11): 1 997-2 014. |
10 | KLIMOWSKI B A, BUNKERS M J, HJELMFELT M R, et al. Severe convective windstorms over the northern high plains of the United States[J]. Weather and Forecasting, 2003, 18(3): 502-519. |
11 | SCHOEN J M, ASHLEY W S. A climatology of fatal convective wind events by storm type[J]. Weather and Forecasting, 2011, 26(1): 109-121. |
12 | SMITH B T, CASTELLANOS T E, WINTERS A C, et al. Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003-09[J]. Weather and Forecasting, 2013, 28(1): 229-236. |
13 | TASZAREK M, ALLEN J T, GROENEMEIJER P, et al. Severe convective storms across Europe and the United States. part I: climatology of lightning, large hail, severe wind, and tornadoes[J]. Journal of Climate, 2020, 33(23): 10 239-10 261. |
14 | DOSWELL C A III, BROOKS H E, KAY M P. Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States[J]. Weather and Forecasting, 2005, 20(4): 577-595. |
15 | ASHLEY W S, MOTE T L. Derecho hazards in the United States[J]. Bulletin of the American Meteorological Society, 2005, 86(11): 1 577-1 592. |
16 | SUROWIECKI A, PILGUJ N, TASZAREK M, et al. Quasi-linear convective systems and derechos across Europe: climatology, accompanying hazards, and societal impacts[J]. Bulletin of the American Meteorological Society, 2024, 105(8): E1619-E1643. |
17 | BROWN A, DOWDY A. Severe convection-related winds in Australia and their associated environments[J]. Journal of Southern Hemisphere Earth Systems Science, 2021, 71(1): 30-52. |
18 | BROWN A, DOWDY A. Severe convective wind environments and future projected changes in Australia[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16). DOI:10.1029/2021JD034633 . |
19 | FEI Haiyan, WANG Xiuming, ZHOU Xiaogang, et al. Climatic characteristics and environmental parameters of severe thunderstorm gales in China[J]. Meteorological Monthly, 2016, 42(12): 1 513-1 521. |
19 | 费海燕, 王秀明, 周小刚, 等. 中国强雷暴大风的气候特征和环境参数分析[J]. 气象, 2016, 42(12): 1 513-1 521. |
20 | YANG X L, SUN J H, ZHENG Y G. A 5-yr climatology of severe convective wind events over China[J]. Weather and Forecasting, 2017, 32(4): 1 289-1 299. |
21 | YANG X L, SUN J H. Organizational modes of severe wind-producing convective systems over North China[J]. Advances in Atmospheric Sciences, 2018, 35(5): 540-549. |
22 | MA Shuping, WANG Xiuming, YU Xiaoding. Environmental parameter characteristics of severe wind with extreme thunderstorm[J]. Journal of Applied Meteorological Science, 2019, 30(3): 292-301. |
22 | 马淑萍, 王秀明, 俞小鼎. 极端雷暴大风的环境参量特征[J]. 应用气象学报, 2019, 30(3): 292-301. |
23 | MA R Y, FENG S L, JIN S L, et al. Statistical characteristics and environmental conditions of the warm-season severe convective events over North China[J]. Atmosphere, 2020, 12(1). DOI:10.3390/atmos12010052 . |
24 | CHEN Xiaoxin, YU Xiaoding, WANG Xiuming. Investigation of Derechos in China: spatiotemporal distribution,environmental characteristics,and morphology of Derechos producing convective systems [J]. Acta Meteorologica Sinica,2022, 80(1): 67-81. |
24 | 陈晓欣,俞小鼎,王秀明. 中国大范围雷暴大风事件(Derechos)研究:时空分布、环境背景和对流系统形态特征[J].气象学报, 2022, 80(1): 67-81. |
25 | YANG X L, SUN J H. The characteristics of cloud-to-ground lightning activity with severe thunderstorm wind in South and North China[J]. Atmospheric and Oceanic Science Letters, 2014, 7(6): 571-576. |
26 | ZHOU Kanghui, ZHENG Yongguang, WANG Tingbo, et al. Fuzzy logic algorithm of thunderstorm gale identification using multisource data [J]. Meteorological Monthly, 2017, 43(7): 781-791. |
26 | 周康辉, 郑永光, 王婷波, 等. 基于模糊逻辑的雷暴大风和非雷暴大风区分方法[J]. 气象, 2017, 43(7): 781-791. |
27 | YANG X L, SUN J H, LUO S. Preconvective environments of severe convective winds over North China and South China[J]. Atmospheric Research, 2024, 304. DOI:10.1016/j.atmosres.2024.107384 . |
28 | QIN Li, LI Yaodong, GAO Shouting. The synoptic and climatic characteristic studies of thunderstorm winds in Beijing[J]. Climatic and Environmental Research, 2006, 11(6): 754-762. |
28 | 秦丽, 李耀东, 高守亭. 北京地区雷暴大风的天气—气候学特征研究[J]. 气候与环境研究, 2006, 11(6): 754-762. |
29 | YANG Xiaoxia, WAN Mingbo, WANG Wenqing, et al. The climatic characteristics of thunderstorm wind events in Shandong Province [J]. Journal of Shandong Meteorology, 2012, 32(4): 16-20. |
29 | 杨晓霞, 万明波, 王文青, 等. 山东省雷暴大风天气的气候特征[J]. 山东气象, 2012, 32(4): 16-20. |
30 | YU Rong, ZHANG Xiaoling, LI Guoping, et al. Analysis of frequency variation of thunderstorm, hail and gale wind in eastern China from 1971 to 2000 [J]. Meteorological Monthly, 2012, 38(10): 1 207-1 216. |
30 | 余蓉, 张小玲, 李国平, 等. 1971—2000年我国东部地区雷暴、冰雹、雷暴大风发生频率的变化[J]. 气象, 2012, 38(10): 1 207-1 216. |
31 | YAN Shiyao, LI Yunying, QI Linlin, et al. Analysis and application of thermo-dynamical and dynamical indexes associated with thunderstorm gale in North China[J]. Torrential Rain and Disasters, 2013, 32(1): 17-23. |
31 | 严仕尧, 李昀英, 齐琳琳, 等. 华北产生雷暴大风的动力热力综合指标分析及应用[J]. 暴雨灾害, 2013, 32(1): 17-23. |
32 | YANG Lei, ZHENG Yongguang. Observational characteristics of thunderstorm gusts in Northeast China and their association with the Northeast China cold vortex[J]. Acta Meteorologica Sinica, 2023, 81(3): 416-429. |
32 | 杨磊, 郑永光. 东北地区雷暴大风观测特征及其与东北冷涡的关系研究[J]. 气象学报, 2023, 81(3): 416-429. |
33 | GUO Yinglian, SUN Jisong. Characteristics of strong convective wind events caused by three types of convective systems in Hubei Province[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 483-497. |
33 | 郭英莲, 孙继松. 湖北三类组织形态强对流系统造成的地面强对流大风特征[J]. 大气科学, 2019, 43(3): 483-497. |
34 | HUANG Y, SUN J H, ZHANG Y C, et al. Initiation, organizational modes and environmental conditions of severe convective wind events during the warm season over North China[J]. Science China Earth Sciences, 2024, 67(9): 2 876-2 894. |
35 | DIXON M, WIENER G. TITAN: thunderstorm identification, tracking, analysis, and nowcasting—a radar-based methodology[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(6): 785-797. |
36 | HABERLIE A M, ASHLEY W S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. part I: segmentation and classification[J]. Journal of Applied Meteorology and Climatology, 2018, 57(7): 1 575-1 598. |
37 | HABERLIE A M, ASHLEY W S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. part II: tracking[J]. Journal of Applied Meteorology and Climatology, 2018, 57(7): 1 599-1 621. |
38 | MA R Y, SUN J H, YANG X L. A seven-year climatology of the initiation, decay and morphology of severe convective storms during the warm season over North China[J]. Monthly Weather Review, 2021. DOI:10.1175/MWR-D-20-0087.1 . |
39 | HABERLIE A M, ASHLEY W S. A radar-based climatology of mesoscale convective systems in the United States[J]. Journal of Climate, 2019, 32(5): 1 591-1 606. |
40 | RYZHKOV A V, KUMJIAN M R, GANSON S M, et al. Polarimetric radar characteristics of melting hail. part I: theoretical simulations using spectral microphysical modeling[J]. Journal of Applied Meteorology and Climatology, 2013, 52(12): 2 849-2 870. |
41 | CINTINEO J L, PAVOLONIS M J, SIEGLAFF J M, et al. A deep-learning model for automated detection of intense midlatitude convection using geostationary satellite images[J]. Weather and Forecasting, 2020, 35(6): 2 567-2 588. |
42 | HUANG Yipeng, LI Wanbiao, ZHAO Yuchun, et al. A review of radar-and satellite-based observational studies and nowcasting techniques on convection initiation[J]. Advances in Earth Science, 2019, 34(12): 1 273-1 287. |
42 | 黄亦鹏, 李万彪, 赵玉春, 等. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1 273-1 287. |
43 | FUJITA T T. Manual of downburst identification for project Nimrod [R]. Satellite and Meso meteorology research paper 156, Department of Geophysical Sciences, University of Chicago, 1978: 104. |
44 | GALLUS W A, SNOOK N A, JOHNSON E V. Spring and summer severe weather reports over the midwest as a function of convective mode: a preliminary study[J]. Weather and Forecasting, 2008, 23(1): 101-113. |
45 | DUDA J D, GALLUS W A. Spring and summer midwestern severe weather reports in supercells compared to other morphologies[J]. Weather and Forecasting, 2010, 25(1): 190-206. |
46 | TIAN Fuyou, ZHANG Xiaoling, CAO Yancha, et al. Baseline climatology of environmental parameters for three severe convective weather phenomena over middle-low areas of China [J]. Plateau Meteorology, 2022, 41(6):1 446-1 459. |
46 | 田付友, 张小玲, 曹艳察, 等. 中国中低海拔地区三类强对流天气环境条件的基本气候特征[J]. 高原气象, 2022, 41(6): 1 446-1 459. |
47 | ZHENG L L, SUN J H, ZHANG X L, et al. Organizational modes of mesoscale convective systems over central East China[J]. Weather and Forecasting, 2013, 28(5): 1 081-1 098. |
48 | ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. Journal of the Atmospheric Sciences, 1988, 45(3): 463-485. |
49 | WEISMAN M L, ROTUNNO R. “A theory for strong long-lived squall lines” revisited[J]. Journal of the Atmospheric Sciences, 2004, 61(4): 361-382. |
50 | TAKEMI T. Environmental stability control of the intensity of squall lines under low-level shear conditions[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D24). DOI: 10.1029/2007JD008793 . |
51 | TAKEMI T. Convection and precipitation under various stability and shear conditions: squall lines in tropical versus midlatitude environment[J]. Atmospheric Research, 2014, 142: 111-123. |
52 | SKAMAROCK W C, WEISMAN M L, KLEMP J B. Three-dimensional evolution of simulated long-lived squall lines[J]. Journal of the Atmospheric Sciences, 1994, 51(17): 2 563-2 584. |
53 | RIDOUT J A. Sensitivity of tropical Pacific convection to dry layers at mid- to upper levels: simulation and parameterization tests[J]. Journal of the Atmospheric Sciences, 2002, 59(23): 3 362-3 381. |
54 | GRANT L D, van den HEEVER S C. Microphysical and dynamical characteristics of low-precipitation and classic supercells[J]. Journal of the Atmospheric Sciences, 2014, 71(7): 2 604-2 624. |
55 | MENG Z Y, YAN D C, ZHANG Y J. General features of squall lines in East China[J]. Monthly Weather Review, 2013, 141(5): 1 629-1 647. |
56 | SUN Jianhua, ZHENG Linlin, ZHAO Sixiong. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 742-755. |
56 | 孙建华, 郑淋淋, 赵思雄. 水汽含量对飑线组织结构和强度影响的数值试验[J]. 大气科学, 2014, 38(4): 742-755. |
57 | WEISMAN M L. The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems[J]. Journal of the Atmospheric Sciences, 1992, 49(19): 1 826-1 847. |
58 | ATKINS N T, BOUCHARD C S, PRZYBYLINSKI R W, et al. Damaging surface wind mechanisms within the 10 June 2003 saint Louis bow echo during BAMEX[J]. Monthly Weather Review, 2005, 133(8): 2 275-2 296. |
59 | XU X, XUE M, WANG Y. The genesis of mesovortices within a real-data simulation of a bow echo system[J]. Journal of the Atmospheric Sciences, 2015, 72(5): 1 963-1 986. |
60 | SMITH T M, ELMORE K L, DULIN S A. A damaging downburst prediction and detection algorithm for the WSR-88D[J]. Weather and Forecasting, 2004, 19(2): 240-250. |
61 | WILSON J W, SCHREIBER W E. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Monthly Weather Review, 1986, 114(12): 2 516-2 536. |
62 | ROBERTS R D, WILSON J W. A proposed microburst nowcasting procedure using single-doppler radar[J]. Journal of Applied Meteorology, 1989, 28(4): 285-303. |
63 | YU Xiaoding. Thunderstorm and strong convection prediction[M]. Beijing: China Meteorological Press, 2020. |
63 | 俞小鼎. 雷暴与强对流临近预报[M]. 北京: 气象出版社, 2020. |
64 | WHEATLEY D M, TRAPP R J, ATKINS N T. Radar and damage analysis of severe bow echoes observed during BAMEX[J]. Monthly Weather Review, 2006, 134(3): 791-806. |
65 | ZHOU A, ZHAO K, LEE W C, et al. VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a preline convective cell[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7). DOI: 10.1029/2019JD031719 . |
66 | ZHOU A, ZHAO K, LEE W C, et al. Evaluation and modification of microphysics schemes on the cold pool evolution for a simulated bow echo in southeast China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(2). DOI: 10.1029/2021JD035262 . |
67 | TRAPP R J, WEISMAN M L. Low-level mesovortices within squall lines and bow echoes. part II: their genesis and implications[J]. Monthly Weather Review, 2003, 131(11): 2 804-2 823. |
68 | ATKINS N T, LAURENT M ST. Bow echo mesovortices. part I: processes that influence their damaging potential[J]. Monthly Weather Review, 2009, 137(5): 1 497-1 513. |
69 | ATKINS N T, LAURENT M ST. Bow echo mesovortices. part II: their genesis[J]. Monthly Weather Review, 2009, 137(5): 1 514-1 532. |
70 | WAKIMOTO R M, MURPHEY H V, NESTER A, et al. High winds generated by bow echoes. part I: overview of the Omaha bow echo 5 July 2003 storm during BAMEX[J]. Monthly Weather Review, 2006, 134(10): 2 793-2 812. |
71 | XU X, JU Y Y, LIU Q Q, et al. Dynamics of two episodes of high winds produced by an unusually long-lived quasi-linear convective system in South China[J]. Journal of the Atmospheric Sciences, 2024, 81(8): 1 449-1 473. |
72 | MAHONEY K M, LACKMANN G M, PARKER M D. The role of momentum transport in the motion of a quasi-idealized mesoscale convective system[J]. Monthly Weather Review, 2009, 137: 3 316-3 338. |
73 | MAHONEY K M, LACKMANN G M. The sensitivity of momentum transport and severe surface winds to environmental moisture in idealized simulation of a mesoscale convective system[J]. Monthly Weather Review, 2011, 139: 1 352-1 369. |
74 | LIU X E, GUO X L. Role of downward momentum transport in the formation of severe surface winds[J]. Atmospheric and Oceanic Science Letters, 2012, 5: 379-383. |
75 | MENG Z Y, ZHANG F Q, MARKOWSKI P, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J]. Journal of the Atmospheric Sciences, 2012, 69(4): 1 182-1 207. |
76 | BRYAN G H, FRITSCH J M. A benchmark simulation for moist nonhydrostatic numerical models[J]. Monthly Weather Review, 2002, 130(12): 2 917-2 928. |
77 | ORF L, WILHELMSON R, LEE B, et al. Evolution of a long-track violent tornado within a simulated supercell[J]. Bulletin of the American Meteorological Society, 2017, 98(1): 45-68. |
78 | NIELSEN E R, SCHUMACHER R S. Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices[J]. Journal of the Atmospheric Sciences, 2018, 75(9): 2 983-3 009. |
79 | SODERHOLM B, RONALDS B, KIRSHBAUM D J. The evolution of convective storms initiated by an isolated mountain ridge[J]. Monthly Weather Review, 2014, 142(4): 1 430-1 451. |
80 | SINGH I, NESBITT S W, DAVIS C A. Quasi-idealized numerical simulations of processes involved in orogenic convection initiation over the sierras de Córdoba[J]. Journal of the Atmospheric Sciences, 2022, 79(4): 1 127-1 149. |
81 | BROOKS H E. Proximity soundings for severe convection for Europe and the United States from reanalysis data[J]. Atmospheric Research, 2009, 93(1/2/3): 546-553. |
82 | TASZAREK M, ALLEN J T, Pú?IK T, et al. Severe convective storms across Europe and the United States. part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes[J]. Journal of Climate, 2020, 33(23): 10 263-10 286. |
83 | RASMUSSEN E N, BLANCHARD D O. A baseline climatology of sounding-derived supercell and Tornado forecast parameters[J]. Weather and Forecasting, 1998, 13(4): 1 148-1 164. |
84 | ALLEN J T, KAROLY D J. A climatology of Australian severe thunderstorm environments 1979-2011: inter-annual variability and ENSO influence[J]. International Journal of Climatology, 2014, 34(1): 81-97. |
85 | TASZAREK M, ALLEN J, Pú?IK T, et al. A climatology of thunderstorms across Europe from a synthesis of multiple data sources[J]. Journal of Climate, 2019, 32(6): 1 813-1 837. |
86 | INGROSSO R, LIONELLO P, MIGLIETTA M M, et al. A statistical investigation of mesoscale precursors of significant tornadoes: the Italian case study[J]. Atmosphere, 2020, 11(3). DOI:10.3390/atmos11030301 . |
87 | SHERBURN K D, PARKER M D. Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments[J]. Weather and Forecasting, 2014, 29(4): 854-877. |
88 | GATZEN C P, FINK A H, SCHULTZ D M, et al. An 18-year climatology of derechos in Germany[J]. Natural Hazards and Earth System Sciences, 2020, 20(5): 1 335-1 351. |
89 | ANDERSON-FREY A K, RICHARDSON Y P, DEAN A R, et al. Characteristics of tornado events and warnings in the southeastern United States[J]. Weather and Forecasting, 2019, 34(4): 1 017-1 034. |
90 | CORFIDI S F, CORFIDI S J, IMY D A, et al. A preliminary study of severe wind-producing MCSs in environments of limited moisture[J]. Weather and Forecasting, 2006, 21(5): 715-734. |
91 | MA R Y, SUN J H, YANG X L. An eight-year climatology of the warm-season severe thunderstorm environments over North China[J]. Atmospheric Research, 2021, 254. DOI:10.1016/j.atmosres.2021.105519 . |
92 | SCHEFFKNECHT P, SERAFIN S, GRUBI?I? V. A long-lived supercell over mountainous terrain[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(709): 2 973-2 986. |
93 | LYZA A W, KNUPP K R. A background investigation of tornado activity across the southern cumberland plateau terrain system of northeastern Alabama [J]. Monthly Weather Review, 2018, 146(12): 4 261-4 278. |
94 | KIRSHBAUM D J. On upstream blocking over heated mountain ridges[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(702): 53-68. |
95 | BEHRENDT A, PAL S, AOSHIMA F, et al. Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(): 81-100. |
96 | KIRSHBAUM D J, FABRY F, CAZENAVE Q. The Mississippi valley convection minimum on summer afternoons: observations and numerical simulations[J]. Monthly Weather Review, 2016, 144(1): 263-272. |
97 | ADLER B, KALTHOFF N. Multi-scale transport processes observed in the boundary layer over a mountainous island[J]. Boundary-Layer Meteorology, 2014, 153(3): 515-537. |
98 | WILSON J W, MEGENHARDT D L. Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines[J]. Monthly Weather Review, 1997, 125(7): 1 507-1 525. |
99 | WILSON J W, ROBERTS R D. Summary of convective storm initiation and evolution during IHOP: observational and modeling perspective[J]. Monthly Weather Review, 2006, 134(1): 23-47. |
100 | WULFMEYER V, BEHREND T A, BAUER H S, et al. The convective and orographically-induced precipitation study: a research and development project of the world weather research program for improving quantitative precipitation forecasting in low-mountain regions [J]. Bulletin of the American Meteorological Society, 2008, 89: 1 477-1 486. |
101 | GEERTS B, PARSONS D, ZIEGLER C L, et al. The 2015 plains elevated convection at night field project[J]. Bulletin of the American Meteorological Society, 2017, 98(4): 767-786. |
102 | KIRSHBAUM D, ADLER B, KALTHOFF N, et al. Moist orographic convection: physical mechanisms and links to surface-exchange processes[J]. Atmosphere, 2018, 9(3). DOI:10.3390/atmos9030080 . |
103 | WECKWERTH T M, BENNETT L J, MILLER L JAY, et al. An observational and modeling study of the processes leading to deep, moist convection in complex terrain[J]. Monthly Weather Review, 2014, 142(8): 2 687-2 708. |
104 | BARTHLOTT C, ADLER B, KALTHOFF N, et al. The role of Corsica in initiating nocturnal offshore convection[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 142: 222-237. |
105 | KIRSHBAUM D J, WANG C C. Boundary layer updrafts driven by airflow over heated terrain[J]. Journal of the Atmospheric Sciences, 2014, 71(4): 1 425-1 442. |
106 | KIRSHBAUM D J, FAIRMAN J G. Cloud trails past the lesser Antilles[J]. Monthly Weather Review, 2015, 143(4): 995-1 017. |
107 | BARKER SCHAAF C, BANTA R M, WURMAN J. Thuderstorm-producing terrain features[J]. Bulletin of the American Meteorological Society, 1988, 69(3): 272-277. |
108 | WILSON J W, FENG Y R, CHEN M, et al. Nowcasting challenges during the Beijing olympics: successes, failures, and implications for future nowcasting systems[J]. Weather and Forecasting, 2010, 25(6): 1 691-1 714. |
109 | CHEN Mingxuan, XIAO Xian, GAO Feng. Dynamical effect of outflow boundary on localized initiation and rapid enhancement of severe convection over Beijing-Tianjin-Hebei region[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5): 897-917. |
109 | 陈明轩, 肖现, 高峰. 出流边界对京津冀地区强对流局地新生及快速增强的动力效应[J]. 大气科学, 2017, 41(5): 897-917. |
110 | SUN Jisong, SHI Zengyun, WANG Ling. A study on topography impacting on distribution of hail events[J]. Climatic and Environmental Research, 2006, 11(1): 76-84. |
110 | 孙继松, 石增云, 王令. 地形对夏季冰雹事件时空分布的影响研究[J]. 气候与环境研究, 2006, 11(1): 76-84. |
111 | SUN Jisong, WANG Hua, WANG Ling, et al. The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(2): 221-234. |
111 | 孙继松, 王华, 王令, 等. 城市边界层过程在北京2004年7月10日局地暴雨过程中的作用[J]. 大气科学, 2006, 30(2): 221-234. |
112 | XIAO Xian, CHEN Mingxuan, GAO Feng, et al. A thermodynamic mechanism analysis on enhancement or dissipation of convective systems from the mountains under weak synoptic forcing[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 100-124. |
112 | 肖现, 陈明轩, 高峰, 等. 弱天气系统强迫下北京地区对流下山演变的热动力机制[J]. 大气科学, 2015, 39(1): 100-124. |
113 | QIN R, CHEN M X. Impact of a front-dryline merger on convection initiation near a mountain ridge in Beijing[J]. Monthly Weather Review, 2017, 145(7): 2 611-2 633. |
114 | CHEN M X, WANG Y C, GAO F, et al. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D20). DOI:10.1029/2012JD018158 . |
115 | MA Wenqian, LI Huahong, CHEN Xiaohua, et al. Analysis on the spatio-temporal characteristics for different types of strong winds over Yunnan[J]. Plateau Meteorology, 2025. DOI:10.7522/j.issn.1000-0534.2024.00091 . |
115 | 马文倩,李华宏,陈小华,等.云南不同类型大风时空特征分析[J]. 高原气象,2025. DOI:10.7522/j.issn.1000-0534.2024.00091 . |
116 | JING Yu, CHEN Chuang, ZHAO Qiang, et al. Spatial-temporal distribution and meteorological conditions of thunderstorm gales in Shaanxi[J]. Journal of Arid Meteorology, 2024, 42(4):576-587. |
116 | 井宇,陈闯,赵强,等.陕西雷暴大风时空分布和气象条件分析[J].干旱气象, 2024, 42(4):576-587. |
117 | HARRIS A R, KAHL J D W. Gust factors: meteorologically stratified climatology, data artifacts, and utility in forecasting peak gusts[J]. Journal of Applied Meteorology and Climatology, 2017, 56(12): 3 151-3 166. |
118 | KAHL J D W. Forecasting peak wind gusts using meteorologically stratified gust factors and MOS guidance[J]. Weather and Forecasting, 2020, 35(3): 1 129-1 143. |
119 | DOSWELL C A III, BROOKS H E, MADDOX R A. Flash flood forecasting: an ingredients-based methodology[J]. Weather and Forecasting, 1996, 11(4): 560-581. |
120 | CINTINEO J L, PAVOLONIS M J, SIEGLAFF J M, et al. The NOAA/CIMSS ProbSevere model: incorporation of total lightning and validation[J]. Weather and Forecasting, 2018, 33(1): 331-345. |
121 | TIAN F Y, ZHENG Y G, ZHANG T, et al. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and Eastern China[J]. Journal of Meteorological Research, 2015, 29(3): 370-384. |
122 | CAO Yancha, TIAN Fuyou, ZHENG Yongguang, et al. Statistical characteristics of environmental parameters for hail over the two-step terrains of China[J]. Plateau Meteorology, 2018, 37(1): 185-196. |
122 | 曹艳察, 田付友, 郑永光, 等. 中国两级阶梯地势区域冰雹天气的环境物理量统计特征[J]. 高原气象, 2018, 37(1): 185-196. |
123 | TIAN F Y, ZHANG X L, SUN J H, et al. Climatology and pre-convection environmental conditions of dry and wet thunderstorm high winds over Eastern China[J]. Theoretical and Applied Climatology, 2024, 155(2): 1 493-1 506. |
124 | TIAN Fuyou, ZHENG Yongguang, SUN Jianhua, et al. Forecasting system for short-term multi-category convective phenomena combining physical understanding and fuzzy logic, part Ⅰ: system construction [J]. Meteorological Monthly, 2024, 50(5): 521-531. |
124 | 田付友, 郑永光,孙建华,等. 融合物理理解与模糊逻辑的分类强对流客观短期预报系统:(1)系统构成[J]. 气象, 2024, 50(5): 521-531. |
125 | TIAN Fuyou, ZHENG Yongguang, JIANCAN Zhaxi, et al. Forecasting system for short-term multi-category convective phenomena combining physical understanding and fuzzy logic part Ⅱ: performance evaluation[J]. Meteorological Monthly, 2024, 50(6): 649-660. |
125 | 田付友, 郑永光, 坚参扎西, 等. 融合物理理解与模糊逻辑的分类强对流客观短期预报系统: (2)表现评估[J]. 气象, 2024, 50(6): 649-660. |
126 | CAO Chunyan, CHEN Yuanzhao, LIU Donghua, et al. The optical flow method and its application to nowcasting[J]. Acta Meteorologica Sinica, 2015, 73(3): 471-480. |
126 | 曹春燕,陈元昭,刘东华,等. 光流法及其在短临预报中的应用[J]. 气象学报,2015, 73(3): 471-480. |
127 | MCGOVERN A, CHASE R J, FLORA M, et al. A review of machine learning for convective weather[J]. Artificial Intelligence for the Earth Systems, 2023, 2(3). DOI:10.1175/AIES-D-22-0077.1 . |
128 | LAGERQUIST R, MCGOVERN A, SMITH T. Machine learning for real-time prediction of damaging straight-line convective wind[J]. Weather and Forecasting, 2017, 32(6): 2 175-2 193. |
129 | ZHOU K H, ZHENG Y G, LI B, et al. Forecasting different types of convective weather: a deep learning approach[J]. Journal of Meteorological Research, 2019, 33(5): 797-809. |
130 | LIU Y Q, YANG L, CHEN M X, et al. A deep learning approach for forecasting thunderstorm gusts in the Beijing-Tianjin-Hebei region[J]. Advances in Atmospheric Sciences, 2024, 41(7): 1 342-1 363. |
131 | LIANG Z M, HU Z Q. A bayes-based approach against sample imbalance to improving the potential forecasts of gale[J]. Geophysical Research Letters, 2022, 49(18). DOI:10.1029/2022GL100019 . |
132 | LEINONEN J, HAMANN U, GERMANN U, et al. Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance[J]. Natural Hazards and Earth System Sciences, 2022, 22(2): 577-597. |
133 | ASHESH A, CHANG C T, CHEN B F, et al. Accurate and clear quantitative precipitation nowcasting based on a deep learning model with consecutive attention and rain-map discrimination[J]. Artificial Intelligence for the Earth Systems, 2022, 1(3). DOI: 10.1175/AIES-D-21-0005.1 . |
/
〈 |
|
〉 |