收稿日期: 2024-09-21
修回日期: 2024-10-21
网络出版日期: 2024-12-19
基金资助
中国气象局航空气象重点开放实验室2023年开放研究课题(HKQXT-2024001);中国气象局重点创新团队“气候变化检测与应对”项目(CMA2022ZD03)
Progress of Research on Aviation and Climate Warming
Received date: 2024-09-21
Revised date: 2024-10-21
Online published: 2024-12-19
Supported by
China Meteorological Administration Key Open Laboratory of Aviation Meteorology 2023 Open Research Topic(HKQXT-2024001);The “Climate Change Detection and Response” Project of the Key Innovation Team of China Meteorological Administration(CMA2022ZD03)
航空业排放和气候变暖是国际社会共同关注的热点问题。航空业通过温室气体排放和高空颗粒物的排放加剧了气候变暖,而气候变暖导致的飞行条件的变化和极端天气也反过来影响了航空业的运营和安全,二者相互作用,形成了复杂的影响循环,对这一领域的研究不仅关乎气候变暖与航空业之间的协调与适应,还具有重要的科学意义。通过大量文献调研探讨了航空业与气候变暖之间相互关系的研究进展和动态,主要包括航空业产生的CO2和非CO2排放物对全球气候变暖的贡献以及气候变暖对航空业造成影响(如湍流变化、飞行时间变化、飞机性能下降和极端事件频率增加等)的现象和机制,并对未来的研究进行了展望。通过对这种相互关系的深入理解,有助于推动航空业的可持续发展,并为应对全球气候挑战提供科学依据。
李耀辉 , 何思奇 , 徐影 . 航空与气候变暖研究进展[J]. 地球科学进展, 2024 , 39(11) : 1112 -1122 . DOI: 10.11867/j.issn.1001-8166.2024.083
Concerns about aviation emissions and climate change are shared internationally. The aviation industry plays a role in climate warming through its greenhouse gas and high-altitude particulate emissions. Conversely, climate warming alters flight conditions and increases extreme weather, impacts aviation operations and safety. The interaction creates a complex cycle of impacts, and research in this area is not only crucial for coordinating and adapting to climate changes in the aviation industry, but also holds scientific significance. An extensive literature review explores the relationship between aviation and climate warming, examining aviation’s CO2 and non-CO2 contributions to global warming and the phenomena and mechanisms by which climate warming in turn affects aviation (including changes in turbulence, flight time, aircraft performance degradation, and increased frequency of extreme events). The review also presents future research prospects. A deeper understanding of this interrelationship will help promote sustainable development of aviation and provide a scientific basis for addressing global climate challenges.
1 | CALLENDAR G S. The artificial production of carbon dioxide and its influence on temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1938, 64(275): 223-240. |
2 | APPLEMAN H. The formation of exhaust condensation trails by Jet Aircraft[J]. Bulletin of the American Meteorological Society, 1953, 34(1): 14-20. |
3 | EISENBUD M. Inadvertent climate modification. Report of the Study of Man’S Impact on Climate (SMIC)[J]. The Quarterly Review of Biology, 1972, 47(4): 465-466. |
4 | KUHN P M. Airborne observations of contrail effects on the thermal radiation budget[J]. Journal of the Atmospheric Sciences, 1970, 27(6): 937-942. |
5 | REINKING R F. Insolation reduction by contrails[J]. Weather, 1968, 23(4): 171-173. |
6 | FRIEDL R R. Atmospheric effects of subsonic aircraft: interim assessment report of the advanced subsonic technology program[Z]. 1997. |
7 | SCHUMANN U. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the aeronox project[J]. Atmospheric Environment, 1997, 31(12): 1 723-1 733. |
8 | PENNER J E, LISTER D, GRIGGS D J, et al. Aviation and the global atmosphere: a special report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 1999. |
9 | BRASSEUR G P, GUPTA M, ANDERSON B E, et al. Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) phase II[J]. Bulletin of the American Meteorological Society, 2016, 97(4): 561-583. |
10 | LEE D S, FAHEY D W, SKOWRON A, et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018[J]. Atmospheric Environment, 2021, 244. DOI: 10.1016/J.Atmosenv.2020.117834 . |
11 | ADOPTED I. Climate change 2014 synthesis report[R]. IPCC: Geneva, Szwitzerland, 2014. |
12 | BURBIDGE R. Adapting aviation to a changing climate: key priorities for action[J]. Journal of Air Transport Management, 2018, 71: 167-174. |
13 | THOMPSON T R. Aviation and the impacts of climate change?climate change impacts upon the commercial air transport industry: an overview[J]. Carbon & Climate Law Review, 2016, 10(2): 105-112. |
14 | PROSSER M C, WILLIAMS P D, MARLTON G J, et al. Evidence for large increases in clear-air turbulence over the past four decades[J]. Geophysical Research Letters, 2023, 50(11). DOI:10.1029/2023GL103814 . |
15 | SMITH I H, WILLIAMS P D, SCHIEMANN R. Clear-air turbulence trends over the north atlantic in high-resolution climate models[J]. Climate Dynamics, 2023, 61(7/8): 3 063-3 079. |
16 | STORER L N, WILLIAMS P D, JOSHI M M. Global response of clear‐air turbulence to climate change[J]. Geophysical Research Letters, 2017, 44(19): 9 976-9 984. |
17 | WILLIAMS P D. Increased light, moderate, and severe clear-air turbulence in response to climate change[J]. Advances in Atmospheric Sciences, 2017, 34(5): 576-586. |
18 | WILLIAMS P D, JOSHI M M. Intensification of winter transatlantic aviation turbulence in response to climate change[J]. Nature Climate Change, 2013, 3(7): 644-648. |
19 | KARNAUSKAS K B, DONNELLY J P, BARKLEY H C, et al. Coupling between air travel and climate[J]. Nature Climate Change, 2015, 5(12): 1 068-1 073. |
20 | IRVINE E A, SHINE K P, STRINGER M A. What are the implications of climate change for trans-Atlantic aircraft routing and flight time?[J]. Transportation Research Part D: Transport and Environment, 2016, 47: 44-53. |
21 | WILLIAMS P D. Transatlantic flight times and climate change[J]. Environmental Research Letters, 2016, 11(2). DOI:10.1088/1748-9326/11/2/024008 . |
22 | COFFEL E, HORTON R. Climate change and the impact of extreme temperatures on aviation[J]. Weather, Climate, and Society, 2015, 7(1): 94-102. |
23 | COFFEL E D, THOMPSON T R, HORTON R M. The impacts of rising temperatures on aircraft takeoff performance[J]. Climatic Change, 2017, 144(2): 381-388. |
24 | ZHOU T, REN L, LIU H, et al. Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China[J]. Science Bulletin, 2018, 63(11): 700-707. |
25 | GRATTON G, PADHRA A, RAPSOMANIKIS S, et al. The impacts of climate change on greek airports[J]. Climatic Change, 2020, 160(2): 219-231. |
26 | ZHOU Y, ZHANG N, LI C, et al. Decreased takeoff performance of aircraft due to climate change[J]. Climatic Change, 2018, 151(3/4): 463-472. |
27 | LEE D S, FAHEY D W, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43(22/23): 3 520-3 537. |
28 | LARSSON J, KAMB A, N?SSéN J, et al. Measuring greenhouse gas emissions from international air travel of a country’s residents methodological development and application for sweden[J]. Environmental Impact Assessment Review, 2018, 72: 137-144. |
29 | VAROTSOS C, KRAPIVIN V, MKRTCHYAN F, et al. On the effects of aviation on carbon-methane cycles and climate change during the period 2015-2100[J]. Atmospheric Pollution Research, 2021, 12(1): 184-194. |
30 | BECK J P, REEVES C E, de LEEUW F A A M, et al. The effect of aircraft emissions on tropospheric ozone in the northern hemisphere[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(1): 17-29. |
31 | STEVENSON D S, DOHERTY R M, SANDERSON M G, et al. Radiative forcing from aircraft NO emissions: mechanisms and seasonal dependence[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D17). DOI:10.1029/2004JD004759 . |
32 | GREWE V, GANGOLI RAO A, GR?NSTEDT T, et al. Evaluating the climate impact of aviation emission scenarios towards the paris agreement including COVID-19 effects[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-24091-y . |
33 | RAP A, FORSTER P M, JONES A, et al. Parameterization of contrails in the UK Met Office Climate Model[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D10). DOI:10.1029/2009JD012443 . |
34 | SCHUMANN U. A contrail cirrus prediction model[J]. Geoscientific Model Development, 2012, 5(3): 543-580. |
35 | NAIMAN A D, LELE S K, WILKERSON J T, et al. Parameterization of subgrid plume dilution for use in large-scale atmospheric simulations[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2 551-2 560. |
36 | GETTELMAN A, MORRISON H. Advanced two-moment bulk microphysics for global models. Part I: off-line tests and comparison with other schemes[J]. Journal of Climate, 2015, 28(3): 1 268-1 287. |
37 | GETTELMAN A, HANNAY C, BACMEISTER J T, et al. High climate sensitivity in the Community Earth System Model version 2 (CESM2)[J]. Geophysical Research Letters, 2019, 46(14): 8 329-8 337. |
38 | LIU X, MA P L, WANG H, et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the community atmosphere model[J]. Geoscientific Model Development, 2016, 9(2): 505-522. |
39 | K?RCHER B. Formation and radiative forcing of contrail cirrus[J]. Nature Communications, 2018, 9(1). DOI:10.1038/s41467-018-04068-0 . |
40 | BURKHARDT U, K?RCHER B, SCHUMANN U. Global modeling of the contrail and contrail cirrus climate impact[J]. Bulletin of the American Meteorological Society, 2010, 91(4): 479-484. |
41 | ZHANG Jinglin, ZHANG Guoyu, YANG Quan, et al. Review of recognition of aircraft contrails and their radiative forcing[J]. Transaction of Atmospheric Sciences, 2018, 41(5): 577-584. |
41 | 张敬林, 张国宇, 杨全, 等. 飞机尾迹云识别及其辐射强迫的研究进展[J]. 大气科学学报, 2018, 41(5): 577-584. |
42 | IPCC. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2013. |
43 | IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2021. |
44 | SHARMAN R, TEBALDI C, WIENER G, et al. An integrated approach to mid- and upper-level turbulence forecasting[J]. Weather and Forecasting, 2006, 21(3): 268-287. |
45 | SHARMAN R D, TRIER S B, LANE T P, et al. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: a review[J]. Geophysical Research Letters, 2012, 39(12). DOI:10.1029/2012GL051996 . |
46 | O’ CONNOR A, KEARNEY D. Evaluating the effect of turbulence on aircraft during landing and take-off phases[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2018, 5(4). DOI:10.15394/IJAAA.2018.1284 . |
47 | CLARK T L, HALL W D, KERR R M, et al. Origins of aircraft-damaging clear-air turbulence during the 9 december 1992 colorado downslope windstorm: numerical simulations and comparison with observations[J]. Journal of the Atmospheric Sciences, 2000, 57(8): 1 105-1 131. |
48 | LIU Haiwen, YOU Jingchao, WU Kaijun, et al. Advance on clear-air turbulence of civil aviation aircraft[J]. Journal of Civil Aviation University of China, 2023, 41(6): 1-8. |
48 | 刘海文, 游景超, 武凯军, 等. 民用航空飞机晴空颠簸研究进展[J]. 中国民航大学学报, 2023, 41(6): 1-8. |
49 | HU Boyan, TANG Jianping, WANG Shuyu. Future change of clear-air turbulence over East Asia: base on CORDEX-WRF downscaling technology[J]. Chinese Journal of Geophysics, 2022, 65(7): 2 432-2 447. |
49 | 胡伯彦, 汤剑平, 王淑瑜. 东亚地区晴空湍流未来变化趋势预估: 基于CORDEX-WRF模式降尺度[J]. 地球物理学报, 2022, 65(7): 2 432-2 447. |
50 | FOUDAD M, SANCHEZ-GOMEZ E, JARAVEL T, et al. Past and future trends in clear-air turbulence over the northern hemisphere[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(13). DOI:10.1029/2023JD040261 . |
51 | STUECKER M F, BITZ C M, ARMOUR K C, et al. Polar amplification dominated by local forcing and feedbacks[J]. Nature Climate Change, 2018, 8(12): 1 076-1 081. |
52 | DELCAMBRE S C, LORENZ D J, VIMONT D J, et al. Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections[J]. Journal of Climate, 2013, 26(14): 4 930-4 946. |
53 | HAARSMA R J, SELTEN F, van OLDENBORGH G J. Anthropogenic changes of the thermal and zonal flow structure over western europe and eastern north atlantic in CMIP3 and CMIP5 models[J]. Climate Dynamics, 2013, 41(9/10): 2 577-2 588. |
54 | WOOLLINGS T, BLACKBURN M. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns[J]. Journal of Climate, 2012, 25(3): 886-902. |
55 | LEE S H, WILLIAMS P D, FRAME T H A. Increased shear in the North Atlantic upper-level jet stream over the past four decades[J]. Nature, 2019, 572(7 771): 639-642. |
56 | LV Y, GUO J, LI J, et al. Increased turbulence in the eurasian upper-level jet stream in winter: past and future[J]. Earth and Space Science, 2021, 8(2). DOI:10.1029/2020EA001556 . |
57 | LUNNON R W, MARKLOW A D. Optimization of time saving in navigation through an area of variable flow[J]. Journal of Navigation, 1992, 45(3): 384-399. |
58 | PALOPO K, WINDHORST R D, SUHARWARDY S, et al. Wind-optimal routing in the national airspace system[J]. Journal of Aircraft, 2010, 47(5): 1 584-1 592. |
59 | LOVE G, SOARES A, PüEMPEL H. Climate change, climate variability and transportation[J]. Procedia Environmental Sciences, 2010, 1: 130-145. |
60 | IPCC. Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2007. |
61 | BARNES E A, POLVANI L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models[J]. Journal of Climate, 2013, 26(18): 7 117-7 135. |
62 | REN D, LESLIE L M. Impacts of climate warming on aviation fuel consumption[J]. Journal of Applied Meteorology and Climatology, 2019, 58(7): 1 593-1 602. |
63 | TRAPP R J, DIFFENBAUGH N S, BROOKS H E, et al. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing[J]. Proceedings of the National Academy of Sciences, 2007, 104(50): 19 719-19 723. |
64 | JENAMANI R K, VASHISTH R C, BHAN S C. Characteristics of thunderstorms and squalls over Indira Gandhi International (IGI) airport, New Delhi-impact on environment especially on summer’s day temperatures and use in forecasting[J]. MAUSAM, 2009, 60(4): 461-474. |
65 | PEJOVIC T, WILLIAMS V A, NOLAND R B, et al. Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2139(1): 97-106. |
66 | YAIR Y. Lightning hazards to human societies in a changing climate[J]. Environmental Research Letters, 2018, 13(12). DOI:10.1088/1748-9326/aaea86 . |
67 | CHEN Z, WANG Y. Impacts of severe weather events on high-speed rail and aviation delays[J]. Transportation Research Part D: Transport and Environment, 2019, 69: 168-183. |
68 | NEUMANN J E, PRICE J, CHINOWSKY P, et al. Climate change risks to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage[J]. Climatic Change, 2015, 131(1): 97-109. |
/
〈 |
|
〉 |