收稿日期: 2024-04-15
修回日期: 2024-09-15
网络出版日期: 2024-11-26
基金资助
国家重点研发计划项目(2023YFC3706300)
Progress in the Study of Turbulent Fluxes of Ground Gas Under Non-stationary Conditions in the Near-surface Layer
Received date: 2024-04-15
Revised date: 2024-09-15
Online published: 2024-11-26
Supported by
the National Key Research and Development Program of China(2023YFC3706300)
在地表与大气间的物质和能量交换中,湍流发挥着至关重要的作用,它控制着输送给大气的热量,调节着大、中、小尺度运动的动能传递与耗散。当前在近地层中,大气湍流的研究通常被简化为具有均一性的平稳湍流,然而由于下垫面等因素的影响,真实大气中湍流通常会表现出非均一性的非平稳特征。通过对近地层非平稳条件下地气湍流通量的国内外相关研究进行归纳和综述,回顾了近地层非平稳湍流的特征,如间歇性、非对称性和非均一性等。非平稳湍流的出现机理主要为动力因素和热力因素。讨论了湍流时间序列平稳性检验的5种方法,以及目前使用的近地层非平稳湍流通量算法(小波分析法)。发现当前针对非平稳湍流通量的计算还有巨大的进步潜力,其中通过向湍流数据中增加已知非平稳信息从而获取“湍流通量真实值”的方法对后续的非平稳湍流研究提供了新的思路。
吴宇杰 , 李煜斌 . 近地层非平稳条件下地气湍流通量研究进展[J]. 地球科学进展, 2024 , 39(10) : 1009 -1020 . DOI: 10.11867/j.issn.1001-8166.2024.079
Turbulence plays a crucial role in the exchange of mass and energy between the surface and the atmosphere, controlling the heat transfers to the atmosphere and regulating the transfer and dissipation of kinetic energy in large-, meso- and micro-scale motions. However, the current study of atmospheric turbulence in the surface layer is usually simplified to stationary turbulence with homogeneity. However, the turbulence in the real atmosphere usually exhibits the non-stationary characteristics of non-homogeneity due to multiple factors (e.g. underlying surface heterogeneity). In this study, we summarize and review the domestic and international research on turbulent flux under non-stationary conditions in the surface layer, and also review the characteristics of non-stationary turbulence (e.g. intermittency, asymmetry, and inhomogeneity). The mechanism behind the emergence of non-stationary turbulence can be attributed to dynamic and thermal factors. This paper discusses five methods for stationarity examination of turbulent time series and the currently used algorithm for non-stationary turbulent fluxes calculation in the near-surface layer (i.e., wavelet analysis method). It finds that there is significant potential for advancement in current calculations of non-stationary turbulent fluxes. The method of introducing known non-stationary information into turbulent data to obtain the “true value of turbulent flux” offers new insights for future research on non-stationary turbulence.
1 | BUSSE F H. Visualizing the dynamics of the onset of turbulence[J]. Science, 2004, 305(5 690): 1 574-1 575. |
2 | HOF B, van DOORNE C W H, WESTERWEEL J, et al. Experimental observation of nonlinear traveling waves in turbulent pipe flow[J]. Science, 2004, 305(5 690): 1 594-1 598. |
3 | SUTTON O G. Atmospheric turbulence[M]. London: Routledge, 2020. |
4 | DRYDEN H L. A review of the statistical theory of turbulence[J]. Quarterly of Applied Mathematics, 1943, 1(1): 7-42. |
5 | LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. |
6 | WYNGAARD J C. Atmospheric turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 205-234. |
7 | ZHAO Jianhua, ZHANG Feng, LIANG Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019, 36(6): 1 419-1 430. |
7 | 赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019, 36(6): 1 419-1 430. |
8 | TIAN Lei, SHU Zhiliang, CHANG Zhuolin, et al. Advances in the studies of turbulence properties in the cloud and the role of turbulence in cloud and precipitation[J]. Torrential Rain and Disasters, 2023, 42(5): 499-507. |
8 | 田磊, 舒志亮, 常倬林, 等. 云中湍流特征及其在云降水中的作用研究进展[J]. 暴雨 灾害, 2023, 42(5): 499-507. |
9 | HAGEN G. Ueber die Bewegung des Wassers in engen cylindrischen R?hren[J]. Annalen der Physik, 1839, 122(3): 423-442. |
10 | REYNOLDS O. XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Philosophical Transactions of the Royal Society of London, 1883, 174: 935-982. |
11 | RAMAPRIAN B R, TU S W. An experimental study of oscillatory pipe flow at transitional Reynolds numbers[J]. Journal of Fluid Mechanics, 1980, 100(3): 513-544. |
12 | GAD-EL-HAK M, BANDYOPADHYAY P R. Reynolds number effects in wall-bounded turbulent flows[J]. Applied Mechanics Reviews, 1994, 47(8): 307-365. |
13 | GLAZIER J A, SEGAWA T, NAERT A, et al. Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers[J]. Nature, 1999, 398: 307-310. |
14 | SMITS A J, MCKEON B J, MARUSIC I. High-reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353-375. |
15 | HU Yinqiao. Boundary layer meteorology[J]. Advances in Earth Science,1991, 6(6):57-59. |
15 | 胡隐樵. 边界层气象学[J]. 地球科学进展,1991, 6(6):57-59. |
16 | TAYLOR G I. Eddy motion in the atmosphere[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical, Physical and Engineering Sciences, 1915, 215(523/524/525/526/527/528/529/530/531/532/533/534/535/536/537): 1-26. |
17 | TAYLOR G I. Statistical theory of turbulenc[J]. Proceedings of the Royal Society of London Series A—Mathematical and Physical Sciences, 1935, 151(873): 421-444. |
18 | von KáRMáN T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1948, 34(11): 530-539. |
19 | KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434(1 890): 9-13. |
20 | HINZE J O. The effect of compressibility on the turbulent transport of heat in a stably stratified atmosphere[M]// Advances in geophysics. Amsterdam: Elsevier, 1959: 229-234. |
21 | MONIN A S. On the nature of turbulence[J]. Soviet Physics Uspekhi, 1978, 21(5): 429-442. |
22 | ZHANG Qiang, HU Yinqiao. Exploring for some problems of atmospheric turbulence in boundary layer[J]. Plateau Meteorology, 1996, 15(2):243-249. |
22 | 张强,胡隐樵. 试探大气边界层湍流运动的若干问题[J]. 高原气象, 1996, 15(2):243-249. |
23 | HU Fei, HONG Zhongxiang, LEI Xiaoen. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 712-728. |
23 | 胡非, 洪钟祥, 雷孝恩. 大气边界层和大气环境研究进展[J]. 大气科学, 2003, 27(4): 712-728. |
24 | KAIMAL J C, WYNGAARD J C, HAUGEN D A, et al. Turbulence structure in the convective boundary layer[J]. Journal of the Atmospheric Sciences, 1976, 33(11): 2 152-2 169. |
25 | Hunt J C R, JE S. Atmospheric boundary layers over non-homogeneous terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1982, 1: 269-318 |
26 | LIU Gang, JIANG Weimei, LUO Yunfeng. Status quo and prospects of researches on atmospheric boundary layer over inhomogeneous underlying surface[J]. Advances in Earth Science, 2005, 20(2): 223-230. |
26 | 刘罡, 蒋维楣, 罗云峰. 非均匀下垫面边界层研究现状与展望[J]. 地球科学进展, 2005, 20(2): 223-230. |
27 | LIU Shuhua, LI Jie, LIU Heping, et al. Characteristics of turbulence spectra and local isotropy in EBEX-2000[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(2): 213-224. |
27 | 刘树华,李洁,刘和平,等. 在EBEX-2000实验资料中湍流谱和局地各向同性特征[J].大气科学, 2005, 29(2): 213-224. |
28 | SUN J L, LENSCHOW D H, BURNS S P, et al. Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers[J]. Boundary-Layer Meteorology, 2004, 110(2): 255-279. |
29 | van de WIEL B J H, RONDA R J, MOENE A F, et al. Intermittent turbulence and oscillations in the stable boundary layer over land. part I: a bulk model[J]. Journal of the Atmospheric Sciences, 2002, 59(5): 942-958. |
30 | LIU Shuhua, LI Jie, WEN Pinghui. Numerical simulation of atmospheric boundary-layer structure over urban and rural areas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38(1): 90-97. |
30 | 刘树华,李洁,文平辉. 城市及乡村大气边界层结构的数值模拟[J]. 北京大学学报(自然科学版), 2002, 38(1): 90-97. |
31 | CHEN Jinbei, CHEN Xiaowen, JING Xiaojun, et al. Ergodicity of turbulence measurements upon complex terrain in Loess Plateau[J]. Science China Earth Sciences, 2021, 64(1): 37-51. |
31 | 陈晋北, 陈霄文, 荆肖军, 等. 黄土高原复杂地形条件下湍流观测的各态历经性检验[J].中国科学:地球科学, 2021, 51(2): 299-313. |
32 | PANOFSKY H, DUTTON J. Atmospheric turbulence: models and methods for engineering applications[M]. New York: Wiley, 1984. |
33 | POVEDA-JARAMILLO G, PUENTE C E. Strange attractors in atmospheric boundary-layer turbulence[J]. Boundary-Layer Meteorology, 1993, 64(1): 175-197. |
34 | GALLEGO M C, GARCíA J A, CANCILLO M L. Characterization of atmospheric turbulence by dynamical systems techniques[J]. Boundary-Layer Meteorology, 2001, 100(3): 375-392. |
35 | MOENG C H, ROTUNNO R. Vertical-velocity skewness in the buoyancy-driven boundary layer[J]. Journal of the Atmospheric Sciences, 1990, 47(9): 1 149-1 162. |
36 | LEMONE M A. Some observations of vertical velocity skewness in the convective planetary boundary layer[J]. Journal of the Atmospheric Sciences, 1990, 47(9): 1 163-1 169. |
37 | WYNGAARD J C. A physical mechanism for the asymmetry in top-down and bottom-up diffusion[J]. Journal of the Atmospheric Sciences, 1987, 44(7): 1 083-1 087. |
38 | HUNT J C R, VASSILICOS J C, FUKUMOTO Y, et al. Turbulence structure and vortex dynamics[M]. Cambridge: Cambridge University Press, 2000. |
39 | SMEETS C J P P, DUYNKERKE P G, VUGTS H F. Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. part I: a combination of katabatic and large-scale forcing[J]. Boundary-Layer Meteorology, 1998, 87(1): 117-145. |
40 | FOKEN T. Turbulenzexperiment zur Untersuchung stabiler Schichtungen[J]. Ber Polarforschung, 1996, 188: 74-78. |
41 | HICKS B B, PENDERGRASS W R, BAKER B D, et al. On the relevance of ln (z0/z0 T)= kB-1 [J]. Boundary-Layer Meteorology, 2018, 167(2): 285-301. |
42 | GRIMSDELL A W, ANGEVINE W M. Observations of the afternoon transition of the convective boundary layer[J]. Journal of Applied Meteorology, 2002, 41(1): 3-11. |
43 | NILSSON E, LOHOU F, LOTHON M, et al. Turbulence kinetic energy budget during the afternoon transition-Part 1: observed surface TKE budget and boundary layer description for 10 intensive observation period days[J]. Atmospheric Chemistry and Physics, 2016, 16(14): 8 849-8 872. |
44 | LOTHON M, LOHOU F, PINO D, et al. The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 10 931-10 960. |
45 | ANGEVINE W M, EDWARDS J M, LOTHON M, et al. Transition periods in the diurnally-varying atmospheric boundary layer over land[J]. Boundary-Layer Meteorology, 2020, 177(2): 205-223. |
46 | MAHRT L, BOU-ZEID E. Non-stationary boundary layers[J]. Boundary-Layer Meteorology, 2020, 177(2): 189-204. |
47 | KENNEL M B. Statistical test for dynamical nonstationarity in observed time-series data[J]. Physical Review E, 1997, 56(1): 316-321. |
48 | QUAN Lihong, HU Fei, CHENG Xueling. Analyses of probability distribution and its statistical characters of turbulent scalars in atmospheric boundary layer[J]. Acta Meteorologica Sinica, 2007, 65(1): 105-112. |
48 | 全利红, 胡非, 程雪玲. 大气边界层湍流标量场的概率分布及其特征分析[J]. 气象学报, 2007, 65(1): 105-112. |
49 | WEI W, ZHANG H S, WU B G, et al. Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12 953-12 967. |
50 | REN Y, ZHANG H S, WEI W, et al. A study on atmospheric turbulence structure and intermittency during heavy haze pollution in the Beijing area[J]. Science China Earth Sciences, 2019, 62(12): 2 058-2 068. |
51 | van de WIEL B J H, MOENE A F, HARTOGENSIS O K, et al. Intermittent turbulence in the stable boundary layer over land. part III: a classification for observations during CASES-99[J]. Journal of the Atmospheric Sciences, 2003, 60(20): 2 509-2 522. |
52 | BENDAT J S, PIERSOL A G. Random data: analysis and measurement procedures[M]. John Wiley & Sons, 2011. |
53 | MAHRT L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 416-429. |
54 | COULTER R L, DORAN J C. Spatial and temporal occurrences of intermittent turbulence during CASES-99[J]. Boundary-Layer Meteorology, 2002, 105(2): 329-349. |
55 | VE?ENAJ, de WEKKER S F J. Determination of non-stationarity in the surface layer during the T-REX experiment[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(690): 1 560-1 571. |
56 | KENDALL M. The advanced theory of statistics[J]. Engineering, 1945. DOI:10.2307/2985818 . |
57 | DIAS N L, CHAMECKI M, KAN A, et al. A study of spectra, structure and correlation functions and their implications for the stationarity of surface-layer turbulence[J]. Boundary-Layer Meteorology, 2004, 110(2): 165-189. |
58 | ANDREAS E L, FAIRALL C W, PERSSON P O G, et al. Probability distributions for the inner scale and the refractive index structure parameter and their implications for flux averaging[J]. Journal of Applied Meteorology, 2003, 42(9): 1 316-1 329. |
59 | WANG Jiemin. Guidance manual for eddy-correlated flux observations [Z/OL]. 2012.[2024-01-20]. . |
59 | 王介民. 涡动相关通量观测指导手册[Z/OL]. 2012.[2024-01-20]. . |
60 | LI Y B, WU Y J, TANG J, et al. Quantitative evaluation of wavelet analysis method for turbulent flux calculation of non-stationary series[J]. Geophysical Research Letters, 2023, 50(5). DOI:10.1029/2022GL101591 . |
61 | FOKEN T, G?OCKEDE M, MAUDER M, et al. Post-field data quality control[M]// Handbook of micrometeorology: a guide for surface flux measurement and analysis. Dordrecht: Springer Netherlands, 2004: 181-208. |
62 | BABI? N, VE?ENAJ ?, de WEKKER S F J. Flux-variance similarity in complex terrain and its sensitivity to different methods of treating non-stationarity[J]. Boundary-Layer Meteorology, 2016, 159(1): 123-145. |
63 | CAVA D, CONTINI D, DONATEO A, et al. Analysis of short-term closure of the surface energy balance above short vegetation[J]. Agricultural and Forest Meteorology, 2008, 148(1): 82-93. |
64 | BIERMANN T, BABEL W, MA W Q, et al. Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2014, 116(1): 301-316. |
65 | HELBIG M, GERKEN T, BEAMESDERFER E R, et al. Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions[J]. Agricultural and Forest Meteorology, 2021, 307. DOI: 10.1016/j.agrformet.2021.108509 . |
66 | VIRKKALA A M, NATALI S M, ROGERS B M, et al. The ABCflux database: arctic-boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems[J]. Earth System Science Data, 2022, 14(1): 179-208. |
67 | MARC A, TIMO V, DARIO P. Eddy covariance: a practical guide to measurement and data analysis[M]. Berlin: Springer Science & Business Media, 2012. |
68 | BALDOCCHI D D. How eddy covariance flux measurements have contributed to our understanding of global change biology[J]. Global Change Biology, 2020, 26(1): 242-260. |
69 | WANG Jiemin, WANG Weizhen, LIU Shaomin, et al. The problems of surface energy balance closure—an overview and case study[J]. Advances in Earth Science, 2009, 24(7): 705-713. |
69 | 王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题: 综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713. |
70 | SCHALLER C, G?CKEDE M, FOKEN T. Flux calculation of short turbulent events-comparison of three methods[J]. Atmospheric Measurement Techniques, 2017, 10(3): 869-880. |
71 | STULL R B. An introduction to boundary layer meteorology[M]. Berlin: Springer Science & Business Media, 2012. |
72 | FOKEN T, AUBINET M, LEUNING R. The eddy covariance method[M]// Eddy covariance. Dordrecht: Springer, 2012: 1-19. |
73 | LENSCHOW D H, MANN J, KRISTENSEN L. How long is long enough when measuring fluxes and other turbulence statistics?[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(3): 661-673. |
74 | THOMAS C, FOKEN T. Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2007, 123(2): 317-337. |
75 | PANIN G N, TETZLAFF G, RAABE A. Inhomogeneity of the land surface and problems in the Parameterization of surface fluxes in natural conditions[J]. Theoretical and Applied Climatology, 1998, 60(1): 163-178. |
76 | TURNIPSEED A A, ANDERSON D E, BURNS S, et al. Airflows and turbulent flux measurements in mountainous terrain[J]. Agricultural and Forest Meteorology, 2004, 125(3/4): 187-205. |
77 | STIPERSKI I, ROTACH M W. On the measurement of turbulence over complex mountainous terrain[J]. Boundary-Layer Meteorology, 2016, 159(1): 97-121. |
78 | DESJARDINS R L. Description and evaluation of a sensible heat flux detector[J]. Boundary-Layer Meteorology, 1977, 11(2): 147-154. |
79 | ONCLEY S P, DELANY A C, HORST T W, et al. Verification of flux measurement using relaxed eddy accumulation[J]. Atmospheric Environment Part A: General Topics, 1993, 27(15): 2 417-2 426. |
80 | PATTEY E, DESJARDINS R L, ROCHETTE P. Accuracy of the relaxed eddy-accumulation technique, evaluated using CO2 flux measurements[J]. Boundary-Layer Meteorology, 1993, 66(4): 341-355. |
81 | ANTONIA R A. Conditional sampling in turbulence measurement[J]. Annual Review of Fluid Mechanics, 1981, 13: 131-156. |
82 | BUSINGER J A, ONCLEY S P. Flux measurement with conditional sampling[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7(2): 349-352. |
83 | FARGE M. Wavelet transforms and their applications to turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 395-457. |
84 | KUMAR P, FOUFOULA-GEORGIOU E. Wavelet analysis for geophysical applications[J]. Reviews of Geophysics, 1997, 35(4): 385-412. |
85 | KATUL G G, PARLANGE M B. Analysis of land surface heat fluxes using the orthonormal wavelet approach[J]. Water Resources Research, 1995, 31(11): 2 743-2 749. |
86 | SAITO M, ASANUMA J. Eddy covariance calculation revisited with wavelet cospectra[J]. SOLA, 2008, 4: 49-52. |
87 | TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78. |
88 | MARAUN D, KURTHS J. Cross wavelet analysis: significance testing and pitfalls[J]. Nonlinear Processes in Geophysics, 2004, 11(4): 505-514. |
89 | DAUBECHIES I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1 005. |
90 | MAHRT L. Eddy asymmetry in the sheared heated boundary layer[J]. Journal of the Atmospheric Sciences, 1991, 48(3): 472-492. |
91 | HUDGINS L, FRIEHE C A, MAYER M E. Wavelet transforms and atmopsheric turbulence[J]. Physical Review Letters, 1993, 71(20): 3 279-3 282. |
92 | TREVI?O G, ANDREAS E L. On wavelet analysis of nonstationary turbulence[J]. Boundary-Layer Meteorology, 1996, 81(3): 271-288. |
93 | ZHU P, ZHANG J A, MASTERS F J. Wavelet analyses of turbulence in the hurricane surface layer during landfalls[J]. Journal of the Atmospheric Sciences, 2010, 67(12): 3 793-3 805. |
94 | SCHALLER C, KITTLER F, FOKEN T, et al. Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem[J]. Atmospheric Chemistry and Physics, 2019, 19(6): 4 041-4 059. |
/
〈 |
|
〉 |