地球科学进展 ›› 2024, Vol. 39 ›› Issue (10): 1009 -1020. doi: 10.11867/j.issn.1001-8166.2024.079

综述与评述 上一篇    下一篇

近地层非平稳条件下地气湍流通量研究进展
吴宇杰 1 , 2( ), 李煜斌 1( )   
  1. 1.南京信息工程大学,江苏 南京 210044
    2.河南省气象科学研究所,河南 郑州 420002
  • 收稿日期:2024-04-15 修回日期:2024-09-15 出版日期:2024-10-10
  • 通讯作者: 李煜斌 E-mail:wuyj_qx@163.com;liyubin@nuist.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC3706300)

Progress in the Study of Turbulent Fluxes of Ground Gas Under Non-stationary Conditions in the Near-surface Layer

Yujie WU 1 , 2( ), Yubin LI 1( )   

  1. 1.Nanjing University of Information Science & Technology, Nanjing 210044, China
    2.Henan Institute of Meteorological Science, Zhengzhou 420002, China
  • Received:2024-04-15 Revised:2024-09-15 Online:2024-10-10 Published:2024-12-03
  • Contact: Yubin LI E-mail:wuyj_qx@163.com;liyubin@nuist.edu.cn
  • About author:WU Yujie, research areas include boundary layer turbulent flux. E-mail: wuyj_qx@163.com
  • Supported by:
    the National Key Research and Development Program of China(2023YFC3706300)

在地表与大气间的物质和能量交换中,湍流发挥着至关重要的作用,它控制着输送给大气的热量,调节着大、中、小尺度运动的动能传递与耗散。当前在近地层中,大气湍流的研究通常被简化为具有均一性的平稳湍流,然而由于下垫面等因素的影响,真实大气中湍流通常会表现出非均一性的非平稳特征。通过对近地层非平稳条件下地气湍流通量的国内外相关研究进行归纳和综述,回顾了近地层非平稳湍流的特征,如间歇性、非对称性和非均一性等。非平稳湍流的出现机理主要为动力因素和热力因素。讨论了湍流时间序列平稳性检验的5种方法,以及目前使用的近地层非平稳湍流通量算法(小波分析法)。发现当前针对非平稳湍流通量的计算还有巨大的进步潜力,其中通过向湍流数据中增加已知非平稳信息从而获取“湍流通量真实值”的方法对后续的非平稳湍流研究提供了新的思路。

Turbulence plays a crucial role in the exchange of mass and energy between the surface and the atmosphere, controlling the heat transfers to the atmosphere and regulating the transfer and dissipation of kinetic energy in large-, meso- and micro-scale motions. However, the current study of atmospheric turbulence in the surface layer is usually simplified to stationary turbulence with homogeneity. However, the turbulence in the real atmosphere usually exhibits the non-stationary characteristics of non-homogeneity due to multiple factors (e.g. underlying surface heterogeneity). In this study, we summarize and review the domestic and international research on turbulent flux under non-stationary conditions in the surface layer, and also review the characteristics of non-stationary turbulence (e.g. intermittency, asymmetry, and inhomogeneity). The mechanism behind the emergence of non-stationary turbulence can be attributed to dynamic and thermal factors. This paper discusses five methods for stationarity examination of turbulent time series and the currently used algorithm for non-stationary turbulent fluxes calculation in the near-surface layer (i.e., wavelet analysis method). It finds that there is significant potential for advancement in current calculations of non-stationary turbulent fluxes. The method of introducing known non-stationary information into turbulent data to obtain the “true value of turbulent flux” offers new insights for future research on non-stationary turbulence.

中图分类号: 

表1 基于 FW96方法的等级分类
Table 1 Classification of non-stationary grades based on FW96 method
图1 30 min时段中 u'w' 的变化
等级1(a)和等级2(b)为FW96方法中的平稳等级;等级3~9[(c)~(i)]为非平稳的等级,其中也标记了M98判定法的判定结果
Fig. 1 Variation of u'w' in a 30-minute time period
Ranks 1 (a) and 2 (b) are stationary in the FW96 method. Ranks 3~9 [(c)~(i)] are non-stationary. The results of the M98 method are also marked in the figure
表2 5种非平稳湍流判定法的优缺点
Table 2 Advantages and disadvantages of five non-stationary turbulence determination methods
方法 RAT或RUT M98 FW96 IF
判定方法 Rat<1.96或Rut<1.96 M98<2.0 RNCOV<0.3 IF>0.2
优点 2种方法可以对时间序列上的湍流是否存在趋势进行判定,既能对单一变量中时间序列进行判定,也能对2个变量的协方差进 行趋势判定 可以用来计算单一湍流序列数据,也可以计算2个湍流时间序列数据的方差、协方差和标准差。该方法可以用来检测趋势,同时当湍流序列存在非对称特征时也能判断为非平稳湍流序列 能对2个独立变量的协方差进行判定,与涡动协方差法关系密切。针对30 min中的5~10 min尺度波动会比较敏感,能很好地判断出此类非平稳特征 IF指数通过1 min的协方差,可以量化湍流通量的间歇性,当湍流通量的时间序列中存在突增或者突减时,该指标则能较好地反映出来
不足 仅能对趋势进行判定,无法判定湍流数据中的间歇特征,小尺度的波动特征,因为这种特征不会改变整个时间序列中的趋势变化 非平稳判断的严格程度不高,当湍流序列存在较大趋势时,才能给出非平稳的判断,同时小尺度的间歇性波动不能给出很好的判断 当湍流在整个时间序列存在一定趋势时,该方法则不能较好地判断,同时当存在较大尺度的涡旋时,判定结果也会存在偏差 当没有发生突增或者突减,但湍流时间序列存在一定增加或减小趋势时,该方法不能给出较好的判定
图2 Quw30 min的湍流协方差 55
(a)~(c)由RAT方法判定为平稳,而由RUT、M98和FW96方法判定为非平稳;(d)~(f)由RUT法判定为平稳,而RAT、M98和FW96法判定为非平稳;(g)~(i)由M98法判定为平稳,而RAT、RUT和FW96法判定为非平稳;(j)~(l)由FW96法判定为平稳,而RAT、RUT和M98法判定为非平稳
Fig. 2 Quw is the 30-min turbulence covariance 55
(a)~(c) are determined to be stationary by the RAT method and non-stationary by the RUT, M98 and FW96 methods; (d)~(f) are determined to be stationary by the RUT method and non-stationary by the RAT, M98 and FW96 methods; (g)~(i) are determined to be stationary by the M98 method and non-stationary by the RAT, RUT and FW96 methods; (j)~(l) are determined to be stationary by the FW96 method, while the RAT, RUT and M98 methods are non-stationary
图3 通过Haar小波变换识别水平距离上非平稳湍流的特征变化 90
w为速度;(a) w的原始时间序列;(b)进行了视窗为500 m的小波变换后的时间序列;(c)Haar小波谱系图
Fig. 3 ldentifcation of horizontal changes of non-stationary turbulence from the Haar-wavelet transform 90
w is velocity; (a) The original time series of w; (b) The time series after performing a wavelet transform with a window of view of 500 m; (c) The Haar wavelet spectral plot
图4 平稳状态下Morleta)和Mexican hatb)小波计算的甲烷通量与涡动协方差结果的散点图 70
虚线 fx)= x,实线是二者的回归线, m表示回归线斜率, t表示回归线截距, σy 表示 y的标准差, σx 表示 x的标准差, R 2表示二者间的相关性
Fig. 4 Scatter plots of methane flux versus vorticity covariance results from Morletaand Mexican hatbwavelet calculations at steady state 70
The dashed line fx)= x and the solid line is the regression line for both. m denotes the slope of the regression line, t denotes the intercept of the regression line, σy denotes the standard deviation of yσx denotes the standard deviation of x, and R 2 denotes the correlation between the two
图5 各种算法计算结果和“真实通量”的相对误差值随平稳等级变化的箱线图 60
涡动协方差使用栗色表示,Mexhat小波法使用绿色表示,Morlet小波法使用蓝色表示。栗色虚线表示涡动协方差法的相对误差的中位数随着平稳等级的变化,绿色虚线表示Mexhat小波法的变化,蓝色虚线表示Morlet小波法的变化
Fig. 5 Box plots of the relative error values of the results of the various algorithms and the ‘true flux’ as a function of stationary grade 60
With the eddy covariance in maroon, the Mexhat wavelet in green, and the Morlet wavelet in blue. The maroon dashed line shows the change in median relative error with stationary level for the eddy covariance method, the green dashed line shows the change for the Mexhat wavelet method, and the blue dashed line shows the change for the Morlet wavelet method
1 BUSSE F H. Visualizing the dynamics of the onset of turbulence[J]. Science, 2004, 305(5 690): 1 574-1 575.
2 HOF B, van DOORNE C W H, WESTERWEEL J, et al. Experimental observation of nonlinear traveling waves in turbulent pipe flow[J]. Science, 2004, 305(5 690): 1 594-1 598.
3 SUTTON O G. Atmospheric turbulence[M]. London: Routledge, 2020.
4 DRYDEN H L. A review of the statistical theory of turbulence[J]. Quarterly of Applied Mathematics, 1943, 1(1): 7-42.
5 LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141.
6 WYNGAARD J C. Atmospheric turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 205-234.
7 ZHAO Jianhua, ZHANG Feng, LIANG Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019, 36(6): 1 419-1 430.
赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019, 36(6): 1 419-1 430.
8 TIAN Lei, SHU Zhiliang, CHANG Zhuolin, et al. Advances in the studies of turbulence properties in the cloud and the role of turbulence in cloud and precipitation[J]. Torrential Rain and Disasters, 2023, 42(5): 499-507.
田磊, 舒志亮, 常倬林, 等. 云中湍流特征及其在云降水中的作用研究进展[J]. 暴雨 灾害, 2023, 42(5): 499-507.
9 HAGEN G. Ueber die Bewegung des Wassers in engen cylindrischen Röhren[J]. Annalen der Physik, 1839, 122(3): 423-442.
10 REYNOLDS O. XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Philosophical Transactions of the Royal Society of London, 1883, 174: 935-982.
11 RAMAPRIAN B R, TU S W. An experimental study of oscillatory pipe flow at transitional Reynolds numbers[J]. Journal of Fluid Mechanics, 1980, 100(3): 513-544.
12 GAD-EL-HAK M, BANDYOPADHYAY P R. Reynolds number effects in wall-bounded turbulent flows[J]. Applied Mechanics Reviews, 1994, 47(8): 307-365.
13 GLAZIER J A, SEGAWA T, NAERT A, et al. Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers[J]. Nature, 1999, 398: 307-310.
14 SMITS A J, MCKEON B J, MARUSIC I. High-reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353-375.
15 HU Yinqiao. Boundary layer meteorology[J]. Advances in Earth Science,1991, 6(6):57-59.
胡隐樵. 边界层气象学[J]. 地球科学进展,1991, 6(6):57-59.
16 TAYLOR G I. Eddy motion in the atmosphere[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical, Physical and Engineering Sciences, 1915, 215(523/524/525/526/527/528/529/530/531/532/533/534/535/536/537): 1-26.
17 TAYLOR G I. Statistical theory of turbulenc[J]. Proceedings of the Royal Society of London Series A—Mathematical and Physical Sciences, 1935, 151(873): 421-444.
18 von KÁRMÁN T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1948, 34(11): 530-539.
19 KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434(1 890): 9-13.
20 HINZE J O. The effect of compressibility on the turbulent transport of heat in a stably stratified atmosphere[M]// Advances in geophysics. Amsterdam: Elsevier, 1959: 229-234.
21 MONIN A S. On the nature of turbulence[J]. Soviet Physics Uspekhi, 1978, 21(5): 429-442.
22 ZHANG Qiang, HU Yinqiao. Exploring for some problems of atmospheric turbulence in boundary layer[J]. Plateau Meteorology, 1996, 15(2):243-249.
张强,胡隐樵. 试探大气边界层湍流运动的若干问题[J]. 高原气象, 1996, 15(2):243-249.
23 HU Fei, HONG Zhongxiang, LEI Xiaoen. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 712-728.
胡非, 洪钟祥, 雷孝恩. 大气边界层和大气环境研究进展[J]. 大气科学, 2003, 27(4): 712-728.
24 KAIMAL J C, WYNGAARD J C, HAUGEN D A, et al. Turbulence structure in the convective boundary layer[J]. Journal of the Atmospheric Sciences, 1976, 33(11): 2 152-2 169.
25 Hunt J C R, JE S. Atmospheric boundary layers over non-homogeneous terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1982, 1: 269-318
26 LIU Gang, JIANG Weimei, LUO Yunfeng. Status quo and prospects of researches on atmospheric boundary layer over inhomogeneous underlying surface[J]. Advances in Earth Science, 2005, 20(2): 223-230.
刘罡, 蒋维楣, 罗云峰. 非均匀下垫面边界层研究现状与展望[J]. 地球科学进展, 2005, 20(2): 223-230.
27 LIU Shuhua, LI Jie, LIU Heping, et al. Characteristics of turbulence spectra and local isotropy in EBEX-2000[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(2): 213-224.
刘树华,李洁,刘和平,等. 在EBEX-2000实验资料中湍流谱和局地各向同性特征[J].大气科学, 2005, 29(2): 213-224.
28 SUN J L, LENSCHOW D H, BURNS S P, et al. Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers[J]. Boundary-Layer Meteorology, 2004, 110(2): 255-279.
29 van de WIEL B J H, RONDA R J, MOENE A F, et al. Intermittent turbulence and oscillations in the stable boundary layer over land. part I: a bulk model[J]. Journal of the Atmospheric Sciences, 2002, 59(5): 942-958.
30 LIU Shuhua, LI Jie, WEN Pinghui. Numerical simulation of atmospheric boundary-layer structure over urban and rural areas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38(1): 90-97.
刘树华,李洁,文平辉. 城市及乡村大气边界层结构的数值模拟[J]. 北京大学学报(自然科学版), 2002, 38(1): 90-97.
31 CHEN Jinbei, CHEN Xiaowen, JING Xiaojun, et al. Ergodicity of turbulence measurements upon complex terrain in Loess Plateau[J]. Science China Earth Sciences, 2021, 64(1): 37-51.
陈晋北, 陈霄文, 荆肖军, 等. 黄土高原复杂地形条件下湍流观测的各态历经性检验[J].中国科学:地球科学, 2021, 51(2): 299-313.
32 PANOFSKY H, DUTTON J. Atmospheric turbulence: models and methods for engineering applications[M]. New York: Wiley, 1984.
33 POVEDA-JARAMILLO G, PUENTE C E. Strange attractors in atmospheric boundary-layer turbulence[J]. Boundary-Layer Meteorology, 1993, 64(1): 175-197.
34 GALLEGO M C, GARCÍA J A, CANCILLO M L. Characterization of atmospheric turbulence by dynamical systems techniques[J]. Boundary-Layer Meteorology, 2001, 100(3): 375-392.
35 MOENG C H, ROTUNNO R. Vertical-velocity skewness in the buoyancy-driven boundary layer[J]. Journal of the Atmospheric Sciences, 1990, 47(9): 1 149-1 162.
36 LEMONE M A. Some observations of vertical velocity skewness in the convective planetary boundary layer[J]. Journal of the Atmospheric Sciences, 1990, 47(9): 1 163-1 169.
37 WYNGAARD J C. A physical mechanism for the asymmetry in top-down and bottom-up diffusion[J]. Journal of the Atmospheric Sciences, 1987, 44(7): 1 083-1 087.
38 HUNT J C R, VASSILICOS J C, FUKUMOTO Y, et al. Turbulence structure and vortex dynamics[M]. Cambridge: Cambridge University Press, 2000.
39 SMEETS C J P P, DUYNKERKE P G, VUGTS H F. Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. part I: a combination of katabatic and large-scale forcing[J]. Boundary-Layer Meteorology, 1998, 87(1): 117-145.
40 FOKEN T. Turbulenzexperiment zur Untersuchung stabiler Schichtungen[J]. Ber Polarforschung, 1996, 188: 74-78.
41 HICKS B B, PENDERGRASS W R, BAKER B D, et al. On the relevance of ln (z0/z0 T)= kB-1 [J]. Boundary-Layer Meteorology, 2018, 167(2): 285-301.
42 GRIMSDELL A W, ANGEVINE W M. Observations of the afternoon transition of the convective boundary layer[J]. Journal of Applied Meteorology, 2002, 41(1): 3-11.
43 NILSSON E, LOHOU F, LOTHON M, et al. Turbulence kinetic energy budget during the afternoon transition-Part 1: observed surface TKE budget and boundary layer description for 10 intensive observation period days[J]. Atmospheric Chemistry and Physics, 2016, 16(14): 8 849-8 872.
44 LOTHON M, LOHOU F, PINO D, et al. The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 10 931-10 960.
45 ANGEVINE W M, EDWARDS J M, LOTHON M, et al. Transition periods in the diurnally-varying atmospheric boundary layer over land[J]. Boundary-Layer Meteorology, 2020, 177(2): 205-223.
46 MAHRT L, BOU-ZEID E. Non-stationary boundary layers[J]. Boundary-Layer Meteorology, 2020, 177(2): 189-204.
47 KENNEL M B. Statistical test for dynamical nonstationarity in observed time-series data[J]. Physical Review E, 1997, 56(1): 316-321.
48 QUAN Lihong, HU Fei, CHENG Xueling. Analyses of probability distribution and its statistical characters of turbulent scalars in atmospheric boundary layer[J]. Acta Meteorologica Sinica, 2007, 65(1): 105-112.
全利红, 胡非, 程雪玲. 大气边界层湍流标量场的概率分布及其特征分析[J]. 气象学报, 2007, 65(1): 105-112.
49 WEI W, ZHANG H S, WU B G, et al. Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12 953-12 967.
50 REN Y, ZHANG H S, WEI W, et al. A study on atmospheric turbulence structure and intermittency during heavy haze pollution in the Beijing area[J]. Science China Earth Sciences, 2019, 62(12): 2 058-2 068.
51 van de WIEL B J H, MOENE A F, HARTOGENSIS O K, et al. Intermittent turbulence in the stable boundary layer over land. part III: a classification for observations during CASES-99[J]. Journal of the Atmospheric Sciences, 2003, 60(20): 2 509-2 522.
52 BENDAT J S, PIERSOL A G. Random data: analysis and measurement procedures[M]. John Wiley & Sons, 2011.
53 MAHRT L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 416-429.
54 COULTER R L, DORAN J C. Spatial and temporal occurrences of intermittent turbulence during CASES-99[J]. Boundary-Layer Meteorology, 2002, 105(2): 329-349.
55 VEČENAJ, de WEKKER S F J. Determination of non-stationarity in the surface layer during the T-REX experiment[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(690): 1 560-1 571.
56 KENDALL M. The advanced theory of statistics[J]. Engineering, 1945. DOI:10.2307/2985818 .
57 DIAS N L, CHAMECKI M, KAN A, et al. A study of spectra, structure and correlation functions and their implications for the stationarity of surface-layer turbulence[J]. Boundary-Layer Meteorology, 2004, 110(2): 165-189.
58 ANDREAS E L, FAIRALL C W, PERSSON P O G, et al. Probability distributions for the inner scale and the refractive index structure parameter and their implications for flux averaging[J]. Journal of Applied Meteorology, 2003, 42(9): 1 316-1 329.
59 WANG Jiemin. Guidance manual for eddy-correlated flux observations [Z/OL]. 2012.[2024-01-20]. .
王介民. 涡动相关通量观测指导手册[Z/OL]. 2012.[2024-01-20]. .
60 LI Y B, WU Y J, TANG J, et al. Quantitative evaluation of wavelet analysis method for turbulent flux calculation of non-stationary series[J]. Geophysical Research Letters, 2023, 50(5). DOI:10.1029/2022GL101591 .
61 FOKEN T, GÖOCKEDE M, MAUDER M, et al. Post-field data quality control[M]// Handbook of micrometeorology: a guide for surface flux measurement and analysis. Dordrecht: Springer Netherlands, 2004: 181-208.
62 BABIĆ N, VEČENAJ Ž, de WEKKER S F J. Flux-variance similarity in complex terrain and its sensitivity to different methods of treating non-stationarity[J]. Boundary-Layer Meteorology, 2016, 159(1): 123-145.
63 CAVA D, CONTINI D, DONATEO A, et al. Analysis of short-term closure of the surface energy balance above short vegetation[J]. Agricultural and Forest Meteorology, 2008, 148(1): 82-93.
64 BIERMANN T, BABEL W, MA W Q, et al. Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2014, 116(1): 301-316.
65 HELBIG M, GERKEN T, BEAMESDERFER E R, et al. Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions[J]. Agricultural and Forest Meteorology, 2021, 307. DOI: 10.1016/j.agrformet.2021.108509 .
66 VIRKKALA A M, NATALI S M, ROGERS B M, et al. The ABCflux database: arctic-boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems[J]. Earth System Science Data, 2022, 14(1): 179-208.
67 MARC A, TIMO V, DARIO P. Eddy covariance: a practical guide to measurement and data analysis[M]. Berlin: Springer Science & Business Media, 2012.
68 BALDOCCHI D D. How eddy covariance flux measurements have contributed to our understanding of global change biology[J]. Global Change Biology, 2020, 26(1): 242-260.
69 WANG Jiemin, WANG Weizhen, LIU Shaomin, et al. The problems of surface energy balance closure—an overview and case study[J]. Advances in Earth Science, 2009, 24(7): 705-713.
王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题: 综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.
70 SCHALLER C, GÖCKEDE M, FOKEN T. Flux calculation of short turbulent events-comparison of three methods[J]. Atmospheric Measurement Techniques, 2017, 10(3): 869-880.
71 STULL R B. An introduction to boundary layer meteorology[M]. Berlin: Springer Science & Business Media, 2012.
72 FOKEN T, AUBINET M, LEUNING R. The eddy covariance method[M]// Eddy covariance. Dordrecht: Springer, 2012: 1-19.
73 LENSCHOW D H, MANN J, KRISTENSEN L. How long is long enough when measuring fluxes and other turbulence statistics?[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(3): 661-673.
74 THOMAS C, FOKEN T. Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2007, 123(2): 317-337.
75 PANIN G N, TETZLAFF G, RAABE A. Inhomogeneity of the land surface and problems in the Parameterization of surface fluxes in natural conditions[J]. Theoretical and Applied Climatology, 1998, 60(1): 163-178.
76 TURNIPSEED A A, ANDERSON D E, BURNS S, et al. Airflows and turbulent flux measurements in mountainous terrain[J]. Agricultural and Forest Meteorology, 2004, 125(3/4): 187-205.
77 STIPERSKI I, ROTACH M W. On the measurement of turbulence over complex mountainous terrain[J]. Boundary-Layer Meteorology, 2016, 159(1): 97-121.
78 DESJARDINS R L. Description and evaluation of a sensible heat flux detector[J]. Boundary-Layer Meteorology, 1977, 11(2): 147-154.
79 ONCLEY S P, DELANY A C, HORST T W, et al. Verification of flux measurement using relaxed eddy accumulation[J]. Atmospheric Environment Part A: General Topics, 1993, 27(15): 2 417-2 426.
80 PATTEY E, DESJARDINS R L, ROCHETTE P. Accuracy of the relaxed eddy-accumulation technique, evaluated using CO2 flux measurements[J]. Boundary-Layer Meteorology, 1993, 66(4): 341-355.
81 ANTONIA R A. Conditional sampling in turbulence measurement[J]. Annual Review of Fluid Mechanics, 1981, 13: 131-156.
82 BUSINGER J A, ONCLEY S P. Flux measurement with conditional sampling[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7(2): 349-352.
83 FARGE M. Wavelet transforms and their applications to turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 395-457.
84 KUMAR P, FOUFOULA-GEORGIOU E. Wavelet analysis for geophysical applications[J]. Reviews of Geophysics, 1997, 35(4): 385-412.
85 KATUL G G, PARLANGE M B. Analysis of land surface heat fluxes using the orthonormal wavelet approach[J]. Water Resources Research, 1995, 31(11): 2 743-2 749.
86 SAITO M, ASANUMA J. Eddy covariance calculation revisited with wavelet cospectra[J]. SOLA, 2008, 4: 49-52.
87 TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.
88 MARAUN D, KURTHS J. Cross wavelet analysis: significance testing and pitfalls[J]. Nonlinear Processes in Geophysics, 2004, 11(4): 505-514.
89 DAUBECHIES I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1 005.
90 MAHRT L. Eddy asymmetry in the sheared heated boundary layer[J]. Journal of the Atmospheric Sciences, 1991, 48(3): 472-492.
91 HUDGINS L, FRIEHE C A, MAYER M E. Wavelet transforms and atmopsheric turbulence[J]. Physical Review Letters, 1993, 71(20): 3 279-3 282.
92 TREVIÑO G, ANDREAS E L. On wavelet analysis of nonstationary turbulence[J]. Boundary-Layer Meteorology, 1996, 81(3): 271-288.
93 ZHU P, ZHANG J A, MASTERS F J. Wavelet analyses of turbulence in the hurricane surface layer during landfalls[J]. Journal of the Atmospheric Sciences, 2010, 67(12): 3 793-3 805.
94 SCHALLER C, KITTLER F, FOKEN T, et al. Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem[J]. Atmospheric Chemistry and Physics, 2019, 19(6): 4 041-4 059.
[1] 刘罡;蒋维楣;罗云峰. 非均匀下垫面边界层研究现状与展望[J]. 地球科学进展, 2005, 20(2): 223-230.
阅读次数
全文
333
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 30 0 25 278

  来源 本网站 其他网站
  次数 143 190
  比例 43% 57%

摘要
193
最新录用 在线预览 正式出版
0 11 182
  来源 本网站 其他网站
  次数 106 87
  比例 55% 45%