研究简报

古罗马混凝土高耐久性和高防腐性的岩石学背景

  • 罗清洵 ,
  • 张典 ,
  • 林启航 ,
  • 余孝乐 ,
  • 马昌前 ,
  • 佘振兵
展开
  • 1.中国地质大学 地球科学学院,湖北 武汉 430074
    2.中国地质大学 地质过程与矿产资源国家重点实验室,湖北 武汉 430074
    3.中国地质大学 生物地质与环境地质国家重点实验室,湖北 武汉 430078
罗清洵,主要从事深部卤素行为与火山资源及其环境效应研究. E-mail:931681949@qq.com
佘振兵,主要从事矿物岩石学与早期环境—生命演化及地球系统科学的教学与研究工作. E-mail:zbsher@cug.edu.cn

收稿日期: 2024-05-07

  修回日期: 2024-08-25

  网络出版日期: 2024-11-22

基金资助

国家自然科学基金重点项目(42130309)

Unraveling the Petrological Enigma of the Durability and Corrosion Resistance of Ancient Roman Concrete

  • Qingxun LUO ,
  • Dian ZHANG ,
  • Qihang LIN ,
  • Xiaole YU ,
  • Changqian MA ,
  • Zhenbing SHE
Expand
  • 1.Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
    2.State Key Laboratory of Geological Process and Mineral Resource, China University of Geosciences, Wuhan 430074, China
    3.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
LUO Qingxun, research areas include deep halogen behavior and effects on resources and environment. E-mail: 931681949@qq.com
SHE Zhenbing, research areas include mineralogy, early evolution of environment and life, and Earth system science. E-mail: zbsher@cug.edu.cn

Received date: 2024-05-07

  Revised date: 2024-08-25

  Online published: 2024-11-22

Supported by

the National Natural Science Foundation of China(42130309)

摘要

我国作为世界上最大的发展中国家和基建大国,不仅有着极高的混凝土需求,同时也愈加注重延缓混凝土老化的耐久性和抵抗海水侵蚀的防腐性。古罗马混凝土凝结着古罗马人的智慧,拥有极高的耐久性和防腐性,吸引了各行业学者的广泛研究。通过搜集火山灰源区罗马火成岩省的岩石学信息,并对比古罗马混凝土与海水接触前后的岩石矿物学变化,发现高铝火山灰的使用和次生铝硅酸盐矿物的形成对古罗马混凝土的高耐久性和防腐性有着重要意义。综述了前人对古罗马混凝土的矿物组成、微观结构和高耐久高防腐机制的研究成果,发现古罗马混凝土中添加了生石灰、火山灰和陶瓷器碎片等物质,高铝火山灰与生石灰甚至骨料中的陶瓷碎片等发生反应,形成了一种由水化铝酸钙(C-A-H)、水化硅酸钙(C-S-H)和水合硅铝酸钙(C-A-S-H)组成的结构,能够牢固地胶结骨料。随着时间的推移,这些水合硅铝酸钙结晶形成托贝莫来石和钙十字沸石等矿物,这些特殊矿物不仅具有较高的力学强度,还能在与海水接触过程中吸附有害离子,从而减缓混凝土受到的海水腐蚀。此外,古罗马混凝土的物质组成还使其具有独特的自愈机制,能够自发填补裂隙。作为一种人造岩石,古罗马混凝土在耐久性和防腐性等方面体现了独特的优势,从岩石矿物学的角度对其开展系统研究,可为现代混凝土和其他地质材料的研发提供理论指导。

本文引用格式

罗清洵 , 张典 , 林启航 , 余孝乐 , 马昌前 , 佘振兵 . 古罗马混凝土高耐久性和高防腐性的岩石学背景[J]. 地球科学进展, 2024 , 39(9) : 968 -986 . DOI: 10.11867/j.issn.1001-8166.2024.077

Abstract

As the world’s largest developing country and infrastructure powerhouse, China not only has an extremely high demand for concrete but also increasingly focuses on enhancing the durability of concrete to delay aging and improving its resistance to seawater corrosion. Ancient Roman concrete, reflecting the wisdom of the Romans, possesses remarkable durability and corrosion resistance, which has attracted extensive research from scholars across various fields. By collecting petrological information from the volcanic area of the Roman volcanic province and comparing the mineralogical changes of ancient Roman concrete before and after exposure to seawater, it is found that the use of high-alumina volcanic ash and the formation of secondary aluminum silicate minerals are crucial for the high durability and corrosion resistance of ancient Roman concrete. The study discovers that ancient Roman concrete contains materials such as quicklime, volcanic ash, and ceramic fragments. The reaction between high-alumina volcanic ash and quicklime, as well as ceramic fragments in the aggregates, form a structure composed of C-A-H, C-S-H, and C-A-S-H, which effectively bond the aggregates. Over time, these C-A-S-H compounds can crystallize into minerals such as tobermorite and phillipsite. These special minerals not only exhibit high mechanical strength but also adsorb harmful ions during interaction with seawater, thereby protecting the concrete from seawater corrosion. Additionally, the material composition of ancient Roman concrete has a unique self-healing mechanism, allowing it to spontaneously fill cracks. As an artificial rock, ancient Roman concrete demonstrates unique advantages in durability and corrosion resistance. A systematic study of its petrological characteristics can provide theoretical guidance for the development of modern concrete and other geological materials.

参考文献

1 NEWELL P. An ancient battle between environment and concrete[J]. Nature Reviews Chemistry, 2021, 5: 513-514.
2 XIAO Jianzhuang, ZHANG Hanghua, TANG Yuxiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete[J]. China Science Bulletin, 2023, 68(5): 510-523.
2 肖建庄,张航华,唐宇翔,等.废弃混凝土再生原理与再生混凝土基本问题[J].科学通报,2023, 68(5): 510-523.
3 JACKSON M D, CHAE S R, MULCAHY S R, et al. Unlocking the secrets of Al-tobermorite in Roman seawater concrete[J]. American Mineralogist, 2013, 98(10): 1 669-1 687.
4 JACKSON M D, MULCAHY S R, CHEN H, et al. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete[J]. American Mineralogist, 2017, 102(7): 1 435-1 450.
5 SEYMOUR L M, MARAGH J, SABATINI P, et al. Hot mixing: mechanistic insights into the durability of ancient Roman concrete[J]. Science Advances, 2023, 9(1). DOI: 10.1126/sciadv.add1602 .
6 JACKSON M D, VOLA G, V?IANSKY D, et al. Cement microstructures and durability in ancient Roman seawater concretes[C]// Historic mortars. Dordrecht: Springer, 2012: 49-76.
7 JACKSON M D. Roman seawater concretes and their material characteristics[M]// Building for eternity:the history and technology of roman concrete engineering in the sea. Oxford: Oxbow Books, 2014: 141-187.
8 SU Z, YAN Z, NAKASHIMA K,et al. Naturally derived cements learned from the wisdom of ancestors:a literature review based on the experiences of ancient China,India and Rome[J]. Materials, 2023, 16(2). DOI: 10.3390/ma16020603 .
9 ZHANG K, SUI Y, WANG L Q, et al. Effects of sticky rice addition on the properties of lime-tile dust mortars[J]. Heritage Science, 2021, 9(1). DOI:10.1186/s40494-020-00475-z .
10 YANG F W, ZHANG B J, MA Q L. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction[J]. Accounts of Chemical Research, 2010, 43(6): 936-944.
11 ZENG Y Y, ZHANG B J, LIANG X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China[J]. Thermochimica Acta, 2008, 473(1/2): 1-6.
12 ZHANG Q, LI B B, ZENG Q, et al. Erosion of aerial lime and sticky rice mortars by cyclic wetting-drying and dilute sulfate acid actions[J]. Advances in Cement Research, 2020, 32(8): 343-357.
13 THIRUMALINI P. Study on the performance enhancement of lime mortar used in ancient temples and monuments in India[J]. Indian Journal of Science and Technology, 2011, 4(11): 1 484-1 487.
14 SANTHANAM K, SHANMUGAVEL D, RAMADOSS R, et al. Characterisation on ancient mortar of Chettinadu house at Kanadukathan, Karaikudi, Tamil Nadu, India[J]. Materials Today: Proceedings, 2021, 43: 1 147-1 153.
15 BRUNET C, MONIé P, JOLIVET L, et al. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany[J]. Tectonophysics, 2000, 321(1): 127-155.
16 PINARELLI L, POLI G, SANTO A. Geochemical characterization of recent Vol Canism from the Tuscan magmatic province(Central Italy): the Roccastrada and San Vincenzo centers[J]. Periodico di Mineralogial, 1989, 58: 67-96.
17 LAVECCHIA G, STOPPA F. The tectonic significance of Italian magmatism: an alternative view to the popular interpretation[J]. Terra Nova, 1996, 8(5): 435-446.
18 CIVETTA L, INNOCENTI F, MANETTI P, et al. Geochemical characteristics of potassic volcanics from Mts. Ernici (Southern Latium, Italy)[J]. Contributions to Mineralogy and Petrology, 1981, 78(1): 37-47.
19 de VIVO B, ROLANDI G, GANS P B, et al. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)[J]. Mineralogy and Petrology, 2001, 73(1): 47-65.
20 de FINO M, la VOLPE L, PECCERILLO A, et al. Petrogenesis of Monte Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 135-145.
21 HORNIG-KJARSGAARD I, KELLER J, KOBERSKI U,et al. Geology,stratigraphy and volcanological evolution of the island of Stromboli,Aeolian Arc,Italy[J]. Acta Vulcanologica, 1993, 3: 21-68.
22 GRASSO M, LENTINI F, NAIRN A E M,et al. A geological and paleomagnetic study of the Hyblean volcanic rocks, Sicily[J]. Tectonophysics, 1983, 98: 271-295.
23 BECCALUVA L, DERIU M, MACCIOTTA G, et al. Geochronology and magmatic character of the pliocene-pleistocene volcanism in Sardinia (Italy)[J]. Bulletin Volcanologique, 1977, 40(3): 153-168.
24 SAVELLI C. Subduction-related episodes of K-alkaline magmatism (15~0.1 Ma) and geodynamic implications in the North Tyrrhenian—central Italy region: a review[J]. Journal of Geodynamics, 2000, 30(5): 575-591.
25 SECCO M, ASSCHER Y, RICCI G, et al. Cementation processes of Roman pozzolanic binders from Caesarea Maritima (Israel)[J]. Construction and Building Materials, 2022, 355. DOI:10.1016/j.conbuildmat.2022.129128 .
26 SA?IN E U, DURAN H E, B?KE H. Lime mortar technology in ancient eastern Roman Provinces[J]. Journal of Archaeological Science: Reports, 2021, 39. DOI:10.1016/j.jasrep.2021.103132 .
27 OLESON J P, BRANDON C, CRAMER S M, et al. The ROMACONS project: a contribution to the historical and engineering analysis of hydraulic concrete in Roman maritime structures[J]. International Journal of Nautical Archaeology, 2004, 33(2): 199-229.
28 DILARIA S, SECCO M, GHIOTTO A R,et al. Early exploitation of Neapolitan pozzolan(pulvis puteolana) in the Roman theatre of Aquileia,northern Italy[J]. Scientific Reports,2023,13(1). DOI: 10.1038/s41598-023-30692-y .
29 LAYCOCK E A, PIRRIE D, CLEGG F, et al. An investigation to establish the source of the Roman lime mortars used in Wallsend, UK[J]. Construction and Building Materials, 2019, 196: 611-625.
30 FORT R, ERGEN? D,ALY N,et al. Implications of new mineral phases in the isotopic composition of Roman lime mortars at the Kom el-Dikka archaeological site in Egypt[J]. Construction and Building Materials,2021,268. DOI: 10.1016/j.conbuildmat.2020.121085 .
31 PECCERILLO A. Plio-quaternary volcanism in Italy[M]. New York: Springer-Verlag Berlin Heidelberg, 2005.
32 GAZDA E K, MCCANN A M. Chapter VII. Reconstruction and function: port, fishery, and villa, the roman port and fishery of Cosa[M]. Princeton, NJ, USA: Princeton University Press, 2017: 137-159.
33 GAZDA E K. Cosa’s contribution to the study of Roman hydraulic concrete:an historiographic commentary[M]// GOLDMAN N W. Classical studies in honor of Cleo Rickman Fitch. New York: Oxford University Press,2001.
34 OESTREICHER B A. Contemporary picture of Caesarea’s ancient harbor[J]. Israel Numismatic Bulletin, 1962, 2: 44-47.
35 VOTRUBA G F. Imported building materials of sebastos harbour, Israel[J]. International Journal of Nautical Archaeology, 2007, 36(2): 325-335.
36 HARRELL J A. Ancient Egyptian limestone quarries: a petrological survey[J]. Archaeometry, 1992, 34(2): 195-211.
37 DEICHMANN F W. Westliche Bautechnik im romischen und rhom?ischen Osten[J]. Mitteilungen des Deutschen Arch?ologischen Instituts. Romische Abteilung Heidelberg,1979,86(1/2): 473-527.
38 ASTM. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete[Z]. ASTM International: West Conshohocken, PA, USA, 2019: 12 959-19 428.
39 SECCO M, DILARIA S, BONETTO J, et al. Technological transfers in the Mediterranean on the verge of Romanization: insights from the waterproofing renders of Nora (Sardinia, Italy)[J]. Journal of Cultural Heritage, 2020, 44: 63-82.
40 MIRIELLO D, BLOISE A, CRISCI G M, et al. New compositional data on ancient mortars and plasters from Pompeii (Campania-southern Italy): archaeometric results and considerations about their time evolution[J]. Materials Characterization, 2018, 146: 189-203.
41 IZZO F, GRIFA C, GERMINARIO C, et al. Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy[J]. The European Physical Journal Plus, 2018, 133(9). DOI: 10.1140/epjp/i2018-12229-1 .
42 BORSOI G, SANTOS S A, MENEZES P, et al. Analytical characterization of ancient mortars from the archaeological Roman site of Pis?es (Beja, Portugal)[J]. Construction and Building Materials, 2019, 204: 597-608.
43 ERGEN? D, FORT R. Multi-technical characterization of Roman mortars from Complutum, Spain[J]. Measurement, 2019, 147. DOI: 10.1016/j.measurement.2019.106876 .
44 MEDEGHINI L, CALZOLARI L, BOTTICELLI M, et al. The secret of ancient Roman hydraulic mortar: the lesson learnt from the past for future cements[J]. Cement and Concrete Composites, 2024, 148. DOI: 10.1016/j.cemconcomp.2024.105484 .
45 MOROPOULOU A, BAKOLAS A, BISBIKOU K. Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58.
46 SEYMOUR L M, TAMURA N, JACKSON M D, et al. Reactive binder and aggregate interfacial zones in the mortar of Tomb of Caecilia Metella concrete, 1C BCE, Rome[J]. Journal of the American Ceramic Society, 2022, 105(2): 1 503-1 518.
47 MASSAZZA F, PEZZUOLI M. Some teachings of a Roman concrete,in mortars,cements and grouts used in the conservation of historic buildings[Z]. International Centre for the Study of the Preservation and Restoration of Cultural Property, 1981.
48 JACKSON M, DEOCAMPO D, MARRA F, et al. Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes[J]. Geoarchaeology, 2010, 25(1): 36-74.
49 JACKSON M D, LANDIS E N, BRUNE P F, et al. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18 484-18 489.
50 ARTIOLI G, SECCO M, ADDIS A. The Vitruvian legacy:mortars and binders before and after the Roman world[J]. Mineralogical Society of Great Britain and Ireland, 2019, 20(4): 151-202.
51 COMMANDRé J M, SALVADOR S, NZIHOU A. Reactivity of laboratory and industrial limes[J]. Chemical Engineering Research and Design, 2007, 85(4): 473-480.
52 FORSTER A. Hot-lime mortars: a current perspective[J]. Journal of Architectural Conservation, 2004, 10(3): 7-27.
53 PESCE C, GODINA M C, HENRY A, et al. Towards a better understanding of hot-mixed mortars for the conservation of historic buildings: the role of water temperature and steam during lime slaking[J]. Heritage Science, 2021, 9(1). DOI: 10.1186/s40494-021-00546-9 .
54 FENG T T, YU H F, TAN Y S, et al. Service life design for concrete engineering in marine environments of Northern China based on a modified theoretical model of chloride diffusion and large datasets of ocean parameters[J]. Engineering, 2022, 17: 123-139.
55 GLASSER F P, MARCHAND J, SAMSON E. Durability of concrete—degradation phenomena involving detrimental chemical reactions[J]. Cement and Concrete Research, 2008, 38(2): 226-246.
56 CHEN Jiankang, YANG Min. Advances of environment damage mechanics in marine engineering concrete[J]. Mechanics in Engineering, 2023, 45(3): 499-512.
56 陈建康, 杨敏. 海工混凝土环境损伤力学研究进展[J]. 力学与实践, 2023, 45(3): 499-512.
57 QIAO X, CHEN J K. Correlation of propagation rate of corrosive crack in concrete under sulfate attack and growth rate of delayed ettringite[J]. Engineering Fracture Mechanics, 2019, 209: 333-343.
58 ZENDRI E. Interaction between clay and lime in “cocciopesto” mortars: a study by 29Si MAS spectroscopy[J]. Applied Clay Science, 2004, 25(1/2): 1-7.
59 JACKSON M D, OLESON J, MOON J,et al. Extreme durability in ancient roman concretes[J]. American Ceramic Society Bulletin, 2018, 97: 22-28.
60 RISPOLI C, MONTESANO G, VERDE M, et al. The key to ancient Roman mortars hydraulicity: ceramic fragments or volcanic materials? A lesson from the Phlegrean archaeological area (southern Italy)[J]. Construction and Building Materials, 2024, 411. DOI: 10.1016/j.conbuildmat.2023.134408 .
61 KUPWADE-PATIL K, de WOLF C, CHIN S, et al. Impact of Embodied Energy on materials/buildings with partial replacement of Ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash[J]. Journal of Cleaner Production, 2018, 177: 547-554.
62 BARBERON F, BAROGHEL-BOUNY V, ZANNI H, et al. Interactions between chloride and cement-paste materials[J]. Magnetic Resonance Imaging, 2005, 23(2): 267-272.
63 SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research, 1996, 26(5): 717-727.
64 GIANFROTTA P A. Harbor structures of the Augustan age in Italy[M]. New York: BRILL, 1996: 65-76.
65 GIANFROTTA P. Archeologia subacquea e testimonianze di pesca[J]. Mélanges de L’école Fran?aise de Rome Antiquité, 1999, 111(1): 9-36.
66 JACKSON M D, MOON J, GOTTI E, et al. Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete[J]. Journal of the American Ceramic Society, 2013, 96(8): 2 598-2 606.
67 KOMARNENI S, ROY D M. Tobermorites: a new family of cation exchangers[J]. Science, 1983, 221(4 611): 647-648.
68 KOMARNENI S, BREVAL E, MIYAKE M, et al. Cation-exchange properties of (Al+Na)-substituted synthetic tobermorites[J]. Clays and Clay Minerals, 1987, 35(5): 385-390.
69 SHIBUE Y. Cation-exchange properties of phillipsite (a zeolite mineral): the differences between Si-rich and Si-poor phillipsites[J]. Separation Science and Technology, 1998, 33(3): 333-355.
70 PETZING J, CHESTER B. Authigenic marine zeolites and their relationship to global volcanism[J]. Marine Geology, 1979, 29(1/2/3/4): 253-271.
71 HU Chuanlin, LI Zongjin, WANG Fazhou. Progress and application prospect of fundamental research on concrete micromechanics[J]. Engineering Mechanics, 2021, 38(4): 1-7, 92.
71 胡传林, 李宗津, 王发洲. 混凝土微观力学基础研究进展及应用展望[J]. 工程力学, 2021, 38(4): 1-7, 92.
72 COLELLA A, di BENEDETTO C, CALCATERRA D, et al. The Neapolitan Yellow Tuff: an outstanding example of heterogeneity[J]. Construction and Building Materials, 2017, 136: 361-373.
73 DE’GENNARO M, CAPPELLETTI P, LANGELLA A, et al. Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence[J]. Contributions to Mineralogy and Petrology, 2000, 139(1): 17-35.
74 WANG Xiaogang, SHI Caijun, HE Fuqiang, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198.
74 王小刚, 史才军, 何富强, 等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报, 2013, 41(2): 187-198.
75 ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344.
76 LEI Yongsheng, HAN Tao, WANG Huiqi, et al. Preparation and characterization of Calcium Silicate Hydrate(C-S-H) synthesized by the hydrothermal method[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 465-469.
76 雷永胜, 韩涛, 王慧奇, 等. 水热合成水化硅酸钙(C-S-H)的制备与表征[J]. 硅酸盐通报, 2014, 33(3): 465-469.
77 ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164.
78 ZHANG Mingbo, QIU Shengtao, LI Jianxin, et al. Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag[J]. Chinese Journal of Engineering, 2016, 38(5): 658-667.
78 张明博, 仇圣桃, 李建新, 等. 冷却方式对低钛高炉渣矿物组成和矿相结构的影响[J]. 工程科学学报, 2016, 38(5): 658-667.
79 LI Zhangang, BAI Pinbo, TIAN Yuming, et al. Preparation and properties of gehlenite with magnesium slag as a raw material[J]. Journal of Taiyuan University of Science and Technology, 2013, 34(6): 435-439.
79 李占刚, 白频波, 田玉明, 等. 镁渣为原料制备钙铝黄长石材料及其性能研究[J]. 太原科技大学学报, 2013, 34(6): 435-439.
80 HOU Xiaowei, YIN Jianhao, KONG Xiangming. Interaction between chemical admixtures and calcium silicate hydrate and chemical admixtures impacts on calcium silicate hydrate properties by molecular: a short review dynamics studies[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2 959-2 970.
80 侯晓伟, 尹健昊, 孔祥明. 化学外加剂与水化硅酸钙相互作用的分子动力学研究进展[J]. 硅酸盐学报, 2022, 50(11): 2 959-2 970.
81 AITCIN P. Cements of yesterday and today Concrete of tomorrow[J]. Cement and Concrete Research, 2000, 30: 1 349-1 359.
82 ZHANG Siyu, HUANG Shaowen. Evaluation methods and influence factors of pozzolanic activity[J]. Materials Reports, 2011, 25(15): 104-106, 113.
82 张思宇, 黄少文. 火山灰活性评价方法及其影响因素[J]. 材料导报, 2011, 25(15): 104-106, 113.
83 SUN Zhenping, YAN Zhuhua, ZHANG Ting, et al. Review of pozzolanic activity detection methods for pozzolanic materials[J]. Materials Reports, 2024, 38(1): 113-118.
83 孙振平, 闫珠华, 张挺, 等. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 113-118.
84 JUENGER M C G, SNELLINGS R, BERNAL S A. Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cement and Concrete Research, 2019, 122: 257-273.
85 Morris A M A. English engineer John Smeaton's experimental method (s): optimisation, hypothesis testing and exploratory experimentation[J]. Studies in History and Philosophy of Science Part A, 2021, 89: 283-294.
86 GARCIA-TRONCOSO N, XU B, PROBST-PESANTEZ W. Development of concrete incorporating recycled aggregates,hydrated lime and natural volcanic pozzolan[J]. Infrastructures, 2021, 6(11). DOI: 10.3390/infrastructures6110155 .
87 PU Xincheng, LIU Fang, WANG Chong, et al. Pozzolanic reaction and enhancement effect of active mineral admixtures in high strength and high performance concrete[C]// Concrete Quality Professional Committee of the Concrete and Prestressed Concrete Branch of the Chinese Society of Civil Engineering. Proceedings of the national conference on advanced concrete technology and mineral admixtures research and engineering applications. 2006: 4.
87 蒲心诚,刘芳,王冲,等. 高强高性能混凝土中活性矿物掺料的火山灰反应及增强效应[C]// 中国土木工程学会混凝土及预应力混凝土分会混凝土质量专业委员会 . 全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集. 2006: 4.
88 LI Ni, WEI Haiquan, ZHANG Liuyi, et al. Discovery of Daliuchong volcanic edifice in Tengchong, Yunnan Province and its significance[J]. Acta Petrologica Sinica, 2014, 30(12): 3 627-3 634.
88 李霓, 魏海泉, 张柳毅, 等. 云南腾冲大六冲火山机构的发现及意义[J]. 岩石学报, 2014, 30(12): 3 627-3 634.
89 HU Zhenqi, XIE Maxian, XIE Ming. Research and application of volcanic ash in mass concrete engineering [J]. Transpo World (Engineering Technology), 2015(3): 78-79.
89 胡振奇,谢马贤,谢明.火山灰在大体积混凝土工程中的研究和应用[J].交通世界(工程技术), 2015(3): 78-79.
90 SHI Zhengyou, Gangfei Lü, FU Rong. Research on the application of volcanic ash in concrete[C]// New technology of concrete construction in hydropower project. Beijing: China Environment Press, 2015: 5.
90 施正友,吕刚裴,芙蓉.火山灰在混凝土中的应用研究[C]// 水电工程混凝土施工新技术.北京:中国环境出版社,2015:5.
91 ZHANG Zhong, LI Chunhong. Use of natural pozzuolanic admixture in construction of hydropower projects[J]. Yunnan Water Power, 2009, 25(1): 67-71.
91 张众, 李春洪. 天然火山灰掺合料在水电工程中的应用[J]. 云南水力发电, 2009, 25(1): 67-71.
92 DAI Qingan, GUO Kangsheng. Application of volcanic ash in cement concrete pavement[J]. Transpo World, 2020(24): 151-152, 157.
92 戴庆安,郭康生.火山灰在水泥混凝土路面中的应用[J].交通世界,2020(24): 151-152, 157.
93 MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications[J]. European Journal of Mineralogy, 2001, 13(3): 577-590.
94 GMIRA A, ZABAT M, PELLENQ R J M, et al. Microscopic physical basis of the poromechanical behavior of cement-based materials[J]. Materials and Structures, 2004, 37(1): 3-14.
95 MANZANO H, DOLADO J S, GUERRERO A, et al. Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels[J]. Physica Status Solidi, 2007, 204(6): 1 775-1 780.
96 SHAHSAVARI R, BUEHLER M J, PELLENQ R J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite[J]. Journal of the American Ceramic Society, 2009, 92(10): 2 323-2 330.
97 OH J E, CLARK S M, MONTEIRO P J M. Does the Al substitution in C-S-H(I) change its mechanical property?[J]. Cement and Concrete Research, 2011, 41(1): 102-106.
98 KOMARNENI S. Phillipsite in Cs decontamination and immobilization[J]. Clays and Clay Minerals, 1985, 33(2): 145-151.
99 TSUJI M, KOMARNENI S, MALLA P. Substituted tobermorites: 27Al and 29Si MASNMR, cation exchange, and water sorption studies[J]. Journal of the American Ceramic Society, 1991, 74(2): 274-279.
100 TSUTSUMI T, NISHIMOTO S, KAMESHIMA Y, et al. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption[J]. Journal of Hazardous Materials, 2014, 266: 174-181.
101 KOMARNENI S, TSUJI M. Selective cation exchange in substituted tobermorites[J]. Journal of the American Ceramic Society, 1989, 72(9): 1 668-1 674.
102 TROTIGNON L, DEVALLOIS V, PEYCELON H, et al. Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste[J]. Physics And Chemistry Earth, Parts A/B/C, 2007, 32(1/2/3/4/5/6/7): 259-274.
103 MARUYAMA I, RYME? J, AILI A, et al. Long-term use of modern Portland cement concrete: the impact of Al-tobermorite formation[J]. Materials & Design, 2021, 198. DOI: 10.1016/j.matdes.2020.109297 .
104 HOUSTON J R, MAXWELL R S, CARROLL S A. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy[J]. Geochemical Transactions, 2009, 10. DOI: 10.1186/1467-4866-10-1 .
105 SHAW S, CLARK S M, HENDERSON C M B. Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study[J]. Chemical Geology, 2000, 167(1/2): 129-140.
106 KOMARNENI S, ROY R, ROY D M, et al. 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites[J]. Journal of Materials Science, 1985, 20(11): 4 209-4 214.
文章导航

/