综述与评述

沙尘气溶胶数值模式与资料同化的研究进展、问题与展望

  • 范亚伟 ,
  • 杜鹤强 ,
  • 杨胜飞 ,
  • 颜长珍 ,
  • 刘秀帆 ,
  • 刘欣雷
展开
  • 1.中国科学院西北生态环境资源研究院,干旱区生态安全与可持续发展重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
范亚伟,博士研究生,主要从事沙尘气溶胶领域的相关研究. E-mail:fanyawei@nieer.ac.cn
杜鹤强,研究员,主要从事土壤风蚀与沙尘过程相关研究. E-mail:dilikexue119@163.com

收稿日期: 2024-05-11

  修回日期: 2024-07-13

  网络出版日期: 2024-09-10

基金资助

国家自然科学基金项目(42271016)

Research Progress, Problems and Prospects of Numerical Modelling and Data Assimilation of Sand and Dust Aerosols

  • Yawei FAN ,
  • Heqiang DU ,
  • Shengfei YANG ,
  • Changzhen YAN ,
  • Xiufan LIU ,
  • Xinlei LIU
Expand
  • 1.Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
FAN Yawei, Ph. D student, research areas include sand and dust aerosols. E-mail: fanyawei@nieer.ac.cn
DU Heqiang, Professor, research areas include wind erosion and dust processes. E-mail: dilikexue119@163.com

Received date: 2024-05-11

  Revised date: 2024-07-13

  Online published: 2024-09-10

Supported by

the National Natural Science Foundation of China(42271016)

摘要

沙尘气溶胶对气候变化、生态环境和人类生命健康均会产生严重影响,亟待对其进行系统性研究。数值模式是研究沙尘气溶胶的有效工具,能够模拟沙尘的起动、传输、扩散及清除等过程。然而,由于起沙参数化方案的不完整及模式输入场的不确定性,导致数值模式的模拟结果存在较大误差。以此为立足点,论述沙尘气溶胶观测方式、数值模式发展历程、起沙参数化方案进展以及资料同化研究进展。并基于目前的研究现状,分析现阶段利用数值模式进行沙尘气溶胶研究过程中存在的问题,进一步提出未来的发展方向。通过全面回顾沙尘气溶胶数值模拟的研究进程,以期为相关领域研究提供参考和启发。

本文引用格式

范亚伟 , 杜鹤强 , 杨胜飞 , 颜长珍 , 刘秀帆 , 刘欣雷 . 沙尘气溶胶数值模式与资料同化的研究进展、问题与展望[J]. 地球科学进展, 2024 , 39(8) : 813 -822 . DOI: 10.11867/j.issn.1001-8166.2024.061

Abstract

Dust aerosols have a profound impact on climate change, the ecological environment, and public health, highlighting the importance of systematic research. Numerical models serve as effective tools for the investigation of dust aerosols because they enable the simulation of processes, including dust emission, transport, dispersion, and deposition. However, substantial discrepancies remain in the simulation outputs of numerical models, which are largely attributed to incomplete dust emission parameterization schemes and uncertainties in the model input fields. We focus on methodologies for dust aerosol observation, advancements in numerical model development, progress in dust emission parameterization, and recent strides in data assimilation research. Based on the current research status, we analyzed issues in the research of dust aerosols using numerical models and outlined prospective avenues for future research. Through a comprehensive review of the advancements in numerical simulation studies of dust aerosols, we hope to offer valuable insights and serve as a reference for further research in related fields.

参考文献

1 FORSTER P, RAMASWAMY V, ARTAXO P, et al. Climate change 2007: the physical science basis[M]. Geneva: Intergovernmental Panel on Climate Change (IPCC), 2007.
2 SHAO Y P. A model for mineral dust emission[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D17): 20 239-20 254.
3 SHAO Y P, WYRWOLL K H, CHAPPELL A, et al. Dust cycle: an emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.
4 ZENDER C S, BIAN H S, NEWMAN D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14). DOI:10.1029/2002JD002775 .
5 SHAO Y. Physical and modeling of wind erosion[M]. Berlin, Germany: Springer Press, 2008.
6 ECK T F, HOLBEN B N, REID J S, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D24): 31 333-31 349.
7 GARNéS-MORALES G, MONTáVEZ J P, HALIFA-MARíN A, et al. Role of aerosols on atmospheric circulation in regional climate experiments over Europe[J]. Atmosphere, 2023, 14(3). DOI:10.3390/atmos14030491 .
8 ZHANG Lu, LI Qianhui, MENG Lu,et al. Research on the development of the deep atmospheric boundary layer, turbulent motion, and dust stagnation[J]. Advances in Earth Science, 2022, 37(10): 991-1 004.
8 张璐,李倩惠,孟露,等. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展,2022,37(10):991-1 004.
9 SEINFELD J H, CARMICHAEL G R, ARIMOTO R, et al. ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 367-380.
10 TWOMEY S. The influence of pollution on the shortwave albedo of clouds[J]. Journal of the Atmospheric Sciences, 1977, 34(7): 1 149-1 152.
11 BIAN H S, ZENDER C S. Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21). DOI:10.1029/2002JD003143 .
12 SHI Guangyu, ZHAO Sixiong. Several scientific issues of studies on the dust storms[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 591-606.
12 石广玉, 赵思雄. 沙尘暴研究中的若干科学问题[J]. 大气科学, 2003, 27(4): 591-606.
13 LIU J, HAN Y Q, TANG X, et al. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network[J]. The Science of the Total Environment, 2016, 568: 1 253-1 262.
14 GAO X G, CAO X J, TIAN P F, et al. Combined observation of a dust storm over the Loess Plateau using a dual-wavelength lidar and an aethalometer[J]. Atmospheric Pollution Research, 2017, 8(6): 1 103-1 112.
15 YANG T, LI H Y, WANG H B, et al. Vertical aerosol data assimilation technology and application based on satellite and ground lidar: a review and outlook[J]. Journal of Environmental Sciences, 2023, 123: 292-305.
16 GAO Qingxian, REN Zhenhai, ZHANG Yungang, et al. Dust event and its formation, development and transportation based on satellite data[J]. Resources Science, 2004, 26(5): 24-29.
16 高庆先,任阵海,张运刚,等. 利用静止卫星资料跟踪沙尘天气的发生、发展及其传输[J]. 资源科学,2004,26(5): 24-29.
17 XU H, XUE Y, GUANG J, et al. Multi-sensor data assimilation of aerosol optical depth[C]// VANCOUVER B C. 2011 IEEE international geoscience and remote sensing symposium. Canada, 2011: 3 253-3 256.
18 WANG Zifa, PANG Chengming, ZHU Jiang, et al. IAP progress in atmospheric environment modeling research[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 987-995.
18 王自发, 庞成明, 朱江, 等. 大气环境数值模拟研究新进展[J]. 大气科学, 2008, 32 (4): 987-995.
19 WU Chenglai, LIN Zhaohui. Impact of two different dust emission schemes on the simulation of a severe dust storm in East Asia using the WRF/Chem model [J]. Climatic and Environmental Research, 2014, 19(4): 419-436.
19 吴成来, 林朝晖. WRF/Chem 模式中两种起沙参数化方案对东亚地区一次强沙尘暴过程模拟的影响[J]. 气候与环境研究,2014, 19(4): 419-436.
20 LIN Caiyan, ZHU Jiang, WANG Zifa. Uncertainty analysis of a dust-transport model[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(2): 232-240.
20 林彩燕, 朱江, 王自发. 沙尘输送模式的不确定性分析[J]. 大气科学, 2009, 33(2): 232-240.
21 AUSTIN J. Toward the four dimensional assimilation of stratospheric chemical constituents[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D2): 2 569-2 588.
22 BEEKMANN M, DEROGNAT C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the atmospheric pollution over the Paris area (ESQUIF) campaign[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17). DOI:10.1029/2003JD003391 .
23 HU Yiwen. Optimisation and numerical simulation of SO2 emission sources based on WRF-Chem model and variational assimilation approach[D]. Nangjing: Nanjing University of Information Science and Technology, 2023.
23 胡译文. 基于WRF-Chem模式和变分同化方法的SO2排放源优化和数值模拟研究[D]. 南京: 南京信息工程大学, 2023.
24 SU L, FUNG J C H. Sensitivities of WRF-Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(21): 11 215-11 230.
25 ZHAO J Q, MA X Y, WU S Q, et al. Dust emission and transport in northwest China: WRF-Chem simulation and comparisons with multi-sensor observations[J]. Atmospheric Research, 2020, 241. DOI:10.1016/j.atmosres.2020.104978 .
26 SU Shixiang. Numerical study on the influence of dust aerosol on meteorological elements and energy balance in northwest China[D]. Lanzhou: Lanzhou University, 2022.
26 苏士翔. 沙尘气溶胶对西北地区气象要素及能量平衡影响的数值研究[D]. 兰州: 兰州大学, 2022.
27 CHEN Dongsheng, SHEN Tongli, MA Gelan, et al. Advances in the meteorological data assimilation[J]. Transactions of Atmospheric Sciences, 2004, 27(4): 550-564.
27 陈东升, 沈桐立, 马革兰, 等. 气象资料同化的研究进展[J]. 南京气象学院学报, 2004, 27(4): 550-564.
28 GONG Jiandong. Data assimilation: a key technology for NWP—technical review of data assimilation in ECMWF[J]. Advances in Meteorological Science and Technology, 2013, 3(3): 6-13.
28 龚建东. 同化技术:数值天气预报突破的关键——以欧洲中期天气预报中心同化技术演进为例[J]. 气象科技进展, 2013, 3(3): 6-13.
29 XIA Xiaoli. Application of aerosol data assimilation of new generation meteorological satellite in air pollution simulation[D].Nanjing: Nanjing University of Information Science & Technology, 2021.
29 夏晓丽. 新一代气象卫星气溶胶资料同化在大气污染模拟中的应用研究[D]. 南京: 南京信息工程大学, 2021.
30 CHEN Siyu, DU Shikang, BI Hongru, et al. Review on identification and forecasting of dusty weather[J]. Journal of Desert Research, 2024, 44(1): 11-21.
30 陈思宇, 杜世康, 毕鸿儒, 等. 沙尘天气识别和预报方法研究综述[J]. 中国沙漠, 2024, 44(1): 11-21.
31 WANG Y G, SARTELET K N, BOCQUET M, et al. Assimilation of ground versus lidar observations for PM10 forecasting[J]. Atmospheric Chemistry and Physics Discussions, 2013, 13(1): 269-283.
32 WANG Y G, SARTELET K N, BOCQUET M, et al. Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign[J]. Atmospheric Chemistry and Physics, 2014, 14(7): 3 511-3 532.
33 WANG Y G, SARTELET K N, BOCQUET M, et al. Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean Basin[J]. Atmospheric Chemistry and Physics, 2014, 14(22): 12 031-12 053.
34 LI H Q, WANG C H, WANG M Z, et al. A new dataset of erodibility in dust source for WRF-Chem model based on remote sensing and soil texture-application and validation[J]. Atmospheric Environment, 2023, 315. DOI:j.atmosenv.2023.120156 .
35 P?SCHL U. Atmospheric aerosols: composition, transformation, climate and health effects[J]. Angewandte Chemie, 2005, 44(46): 7 520-7 540.
36 SUGIMOTO N. Assimilation of lidar observations in aerosol transport models[C]// 26th international laser radar conference. Porto Heli, Greece, 2012.
37 YAO Na, ZHANG Miaomiao, BU Lingbing, et al. Aerosol classification based on airborne high spectral resolution lidar[J]. Acta Optica Sinica, 2023, 43(24): 2428005.
37 姚娜, 张苗苗, 卜令兵, 等. 基于机载高光谱分辨率激光雷达的气溶胶分类研究[J]. 光学学报, 2023, 43(24): 2428005.
38 LI Xia, SHENG Jiujiang, WANG Fei, et al. Correction of lidar ratio and its vertical distribution characteristics using aircraft observations[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(3): 653-665.
38 李霞, 盛久江, 王飞, 等. 基于机载观测资料订正雷达比及其垂直分布特征[J]. 大气科学, 2022, 46(3): 653-665.
39 WANG Wencai. Observation and study on the transport of dust aerosol and its climate effect[D]. Lanzhou: Lanzhou University, 2013.
39 王文彩. 沙尘气溶胶的传输和气候效应的观测研究[D]. 兰州: 兰州大学, 2013.
40 LEE H J, LIU Y, COULL B A, et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmospheric Chemistry and Physics, 2011, 11(15): 7 991-8 002.
41 REMER L A, KAUFMAN Y J, TANRé D, et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.
42 YU H B, DICKINSON R E, CHIN M, et al. Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D3). DOI:10.1029/2002JD002717 .
43 KAHN R A, GAITLEY B J, GARAY M J, et al. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the aerosol robotic network[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D23). DOI:10.1029/2010JD14601 .
44 CAO C Y, XIONG X X, WU A S, et al. Assessing the consistency of AVHRR and MODIS L1B reflectance for generating fundamental climate data records[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D9). DOI:10.1029/2007JD009363 .
45 SEKIYAMA T T, YUMIMOTO K, TANAKA T Y, et al. Data assimilation of Himawari-8 aerosol cbservations: Asian dust forecast in June 2015[J]. SOLA, 2016, 12: 86-90.
46 HU J Y, TANG S H, LIU H L, et al. An operational precipitable water vapor retrieval algorithm for FengYun-2F/VISSR using a modified three-band physical split-window method[J]. Journal of Meteorological Research, 2019, 33(2): 276-288.
47 YANG J, ZHANG P, LU N M, et al. Improvements on global meteorological observations from the current FengYun 3 satellites and beyond[J]. International Journal of Digital Earth, 2012, 5(3): 251-265.
48 XIE Yanqing, LI Zhengqiang, HOU Weizhen. Aerosol optical depth retrieval over land using data from AGRI onboard FY-4A[J]. National Remote Sensing Bulletin, 2022, 26(5): 913-922.
48 谢艳清, 李正强, 侯伟真. FY-4A AGRI 陆地气溶胶光学厚度反演[J]. 遥感学报, 2022, 26(5): 913-922.
49 BO Xin. CALPUFF modeling technique methodology and application[M]. Beijing: China Environment Press, 2016.
49 伯鑫. CALPUFF模型技术方法与应用[M]. 北京:中国环境出版社,2016.
50 STOCKWELL W R, MIDDLETON P, CHANG J S, et al. The second generation regional acid deposition model chemical mechanism for regional air quality modeling[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D10): 16 343-16 367.
51 HANNA S R, MOORE G E, FERNAU M E. Evaluation of photochemical grid models (UAM-IV, UAM-V, and the ROM/UAM-IV couple) using data from the Lake Michigan Ozone Study (LMOS)[J]. Atmospheric Environment, 1996, 30(19): 3 265-3 279.
52 KUKKONEN J, OLSSON T, SCHULTZ D M, et al. A review of operational, regional-scale, chemical weather forecasting models in Europe[J]. Atmospheric Chemistry and Physics, 2012, 12(1): 1-87.
53 GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled “online” chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37): 6 957-6 975.
54 PAGOWSKI M, LIU Z, GRELL G A, et al. Implementation of aerosol assimilation in gridpoint statistical interpolation (v. 3.2) and WRF-Chem (v. 3.4.1)[J]. Geoscientific Model Development, 2014, 7(4): 1 621-1 627.
55 LIANG L H, ZHANG W M, TAN L H, et al. Dust emission from gobi under different dust content conditions: a wind tunnel study atop the mogao grottoes[J]. Atmosphere, 2021, 12(11). DOI:10.3390/atmos/2111498 .
56 GILLETTE D A, BLIFFORD I H, FENSTER C R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion[J]. Journal of Applied Meteorology, 1972, 11(6): 977-987.
57 WANG Rende, LI Qing, CHANG Chunping, et al. Review of field measurement technologies in soil wind erosion[J]. Journal of Desert Research, 2019, 39(4): 113-128.
57 王仁德, 李庆, 常春平, 等. 土壤风蚀野外测量技术研究进展[J]. 中国沙漠, 2019, 39(4): 113-128.
58 GUO Z L, WANG R D, VAN PELT R S, et al. Construction and field use of a cyclone type instantaneous weighing aeolian sand trap[J]. Aeolian Research, 2020, 43. DOI:10.1016/j.aeolia.2019.100564 .
59 DU H Q, XUE X, WANG T, et al. Modeling dust emission in alpine regions with low air temperature and low air pressure—a case study on the Qinghai-Tibetan Plateau (QTP)[J]. Geoderma, 2022, 422. DOI:10.1016/j.geoderma.2022.115930 .
60 SHAO Y, DONG C H. A review on East Asian dust storm climate, modelling and monitoring[J]. Global and Planetary Change, 2006, 52(1/4): 1-22.
61 GREELEY R, LEACH R, WHITE B, et al. Threshold windspeeds for sand on Mars: wind tunnel simulations[J]. Geophysical Research Letters, 1980, 7(2): 121-124.
62 SHAO Y P, JUNG E, LESLIE L M. Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D24): AAC21-1-AAC21-23.
63 RUBIN J I, REID J S, HANSEN J A, et al. Assimilation of AERONET and MODIS AOT observations using variational and ensemble data assimilation methods and its impact on aerosol forecasting skill[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(9): 4 967-4 992.
64 TANG L, QU J B, MI Z F, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J]. Nature Energy, 2019, 4: 929-938.
65 LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141.
66 HOKE J E, ANTHES R A. The initialization of numerical models by a dynamic-initialization technique[J]. Monthly Weather Review, 1976, 104(12): 1 551-1 556.
67 CHU K K, PENG Z, LIU Z Q, et al. Evaluating the impact of emissions regulations on the emissions reduction during the 2015 China victory day parade with an ensemble square root filter[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(8): 4 122-4 134.
68 ZANG Zengliang, HAO Zilong, YE Fang. Cross-correlation analysis and assimilation application of aerosol variables based on the WRF-Chem model[C]. Tianjin: Chinese Meteorological Society, 2015.
68 臧增亮, 郝子龙, 叶芳. 基于WRF-Chem模式气溶胶变量的交叉相关分析及同化应用[C]. 天津: 中国气象学会, 2015.
69 CUI Yingjie, WANG Zifa, ZHU Jiang, et al. A preliminary study on data assimilation for numerical air quality model prediction[J]. Climatic and Environmental Research, 2006, 11(5): 616-626.
69 崔应杰, 王自发, 朱江, 等. 空气质量数值模式预报中资料同化的初步研究[J]. 气候与环境研究, 2006, 11(5): 616-626.
70 NIU T, GONG S L, ZHU G F, et al. Data assimilation of dust aerosol observations for the CUACE/dust forecasting system[J]. Atmospheric Chemistry and Physics, 2008, 8(13): 3 473-3 482.
71 SEKIYAMA T, TANAKA T. Dust aerosol analysis and prediction with 4D-EnKF data assimilation[J]. Geophysical Research Abstracts, 2010,12: EGU2010-8681.
72 LIN C, WANG Z, ZHU J. An Ensemble Kalman Filter for severe dust storm data assimilation over China[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 975-2 983.
73 SEKIYAMA T T, TANAKA T Y, SHIMIZU A, et al. Data assimilation of CALIPSO aerosol observations[J]. Atmospheric Chemistry and Physics, 2010, 10(1): 39-49.
74 LI Z, ZANG Z, LI Q B, et al. A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction[J]. Atmospheric Chemistry and Physics, 2013, 13(8): 4 265-4 278.
75 CHEN D, LIU Z, SCHWARTZ C S, et al. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States[J]. Geoscientific Model Development, 2014, 7(6): 2 709-2 715.
76 FENG Qin. Study on improvement of numerical prediction of haze by assimilation of satellite AOD data[D].Nanjing: Nanjing University of Information Science & Technology, 2017.
76 冯沁. 卫星AOD资料同化对灰霾数值预报改进研究[D]. 南京: 南京信息工程大学, 2017.
77 BENEDETTI A, di GIUSEPPE F, JONES L, et al. The value of satellite observations in the analysis and short-range prediction of Asian dust[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 987-998.
78 TOMASO E D, SCHUTGENS N, JORBA O, et al. Assimilation of MODIS dark target and deep blue observations in the dust aerosol component of NMMB/BSC-CTM version 1.0[J]. Geoscientific Model Development, 2016, 10(3): 1 107-1 129.
79 CHAI T F, KIM H C, PAN L, et al. Impact of moderate resolution imaging spectroradiometer aerosol optical depth and airNow PM2.5 assimilation on community multi-scale air quality aerosol predictions over the contiguous United States[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5 399-5 415.
80 MENUT L, PéREZ C, HAUSTEIN K, et al. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(12): 6 505-6 520.
81 KIMURA R, MORIYAMA M. Application of a satellite-based aridity index in dust source regions of northeast Asia[J]. Journal of Arid Environments, 2014, 109: 31-38.
82 ESCRIBANO J, BOUCHER O, CHEVALLIER F, et al. Subregional inversion of North African dust sources[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(14): 8 549-8 566.
83 ESCRIBANO J, BOUCHER O, CHEVALLIER F, et al. Impact of the choice of the satellite aerosol optical depth product in a sub-regional dust emission inversion[J]. Atmospheric Chemistry and Physics, 2017, 17(11): 7 111-7 126.
84 CHENG X H, HAO Z L, ZANG Z L, et al. A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing-Tianjin-Hebei region[J]. Atmospheric Chemistry and Physics, 2021, 21(18): 1 747-1 761.
文章导航

/