土坷垃与泥疙瘩:如何认识和表征土壤团聚体生物物理结构?
收稿日期: 2024-06-14
修回日期: 2024-07-10
网络出版日期: 2024-09-10
基金资助
国家自然科学基金项目(42077082)
Dust or Dirt: How to Understand and Characterize the Biophysical Architecture of Soil Aggregate System
Received date: 2024-06-14
Revised date: 2024-07-10
Online published: 2024-09-10
Supported by
the National Natural Science Foundation of China(42077082)
近20年来土壤团聚体的研究逐渐成为土壤学研究的主要方向,其理论和方法不断推陈出新。通过回顾土壤团聚体形成发育的基本理论沿革,梳理了土壤团聚体粒径分组、组分分析和结构表征的技术沿革,讨论和归纳了土壤团聚体分离制备和生物物理结构解剖分析的技术方法,并凝练了对土壤团聚体系统的本质科学认识。得到的主要认识包括:
赵正 , 冯潇 , 刘成 , 陈硕桐 , 刘志伟 , 王燕 , 夏少攀 , 刘晓雨 , 卞荣军 , 张旭辉 , 程琨 , 郑聚锋 , 李恋卿 , 潘根兴 . 土坷垃与泥疙瘩:如何认识和表征土壤团聚体生物物理结构?[J]. 地球科学进展, 2024 , 39(8) : 772 -787 . DOI: 10.11867/j.issn.1001-8166.2024.060
With growing concerns about ecosystem functioning and the services provided by soil, the study of soil aggregates has increasingly become a central discipline of modern soil science, with ongoing updates to consensus and methodology. In this review, we provide a holistic overview of the understanding and characterization of the soil aggregate system that has emerged over the last two decades. The evolution of concepts related to soil aggregation, size fractionation, and structural characterization is presented, along with discussions on the separation and examination of the biophysical structure. Additionally, the final core scientific consensus on the soil hierarchy system is synthesized. The key points of understanding soil aggregates are as follows:
1 | LEHMANN J, BOSSIO D A, K?GEL-KNABNER I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth and Environment, 2020, 1(10): 544-553. |
2 | BANERJEE S, van der HEIJDEN M G A. Soil microbiomes and one health[J]. Nature Reviews Microbiology, 2023, 21(1): 6-20. |
3 | FAO. Soils, where food begins: how can soils continue to sustain the growing need for food production in the current fertilizer crisis?[M]. Rome, Italy: FAO, 2023. |
4 | SHEN Q R, PAN G X. Inaugural editorial: soil science and environment[J]. Soil Science and Environment, 2022, 1(1): 1-2. |
5 | PAN Genxing, ZHOU Jianmin. Encyclopedia of China (the third edition): agricultural resources and environment[M]. Beijing: Encyclopedia of China Publishing House, 2022. |
5 | 潘根兴, 周建民. 中国大百科全书(第三版)·农业资源与环境[M]. 北京: 中国大百科全书出版社, 2022. |
6 | LI Baoguo, ZHOU Hu, WANG Gang, et al. Explore the “transparent” soils: soilporelogy has sailed[J]. Acta Pedologica Sinica, 2023, 60(5): 1 221-1 230. |
6 | 李保国, 周虎, 王钢, 等. 探索 “透明” 土壤体: 土壤孔隙学的时代已经启航[J]. 土壤学报, 2023, 60(5): 1 221-1 230. |
7 | LIU Yalong, WANG Ping, WANG Jingkuan. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643. |
7 | 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643. |
8 | AMELUNG W, TANG N, SIEBERS N, et al. Architecture of soil microaggregates: advanced methodologies to explore properties and functions[J]. Journal of Plant Nutrition and Soil Science, 2024, 187(1): 17-50. |
9 | SMIRNOV. Soviet soil scientist—the life and theory of Williams[M]. Beijing: Compilation Committee of North China Institute of Agricultural Sciences, 1950. |
9 | 斯米尔诺夫. 苏联大土壤学家——威廉斯的生平及其学说[M]. 北京: 华北农业科学研究所编译委员会, 1950. |
10 | EDWARDS A P, BREMNER J M. Microaggregates in soils[J]. Journal of Soil Science, 1967, 18(1): 64-73. |
11 | TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163. |
12 | OADES J M, WATERS A G. Aggregate hierarchy in soils[J]. Soil Research, 1991, 29(6): 815-828. |
13 | JASTROW J D, MILLER R M. Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations[M]// LAL R, KIMBLE J M, FOLLETT R F, et al. Soil processes and the carbon cycle. Boca Raton: CRC Press, 1997: 1-17. |
14 | TISDALL J M. Possible role of soil microorganisms in aggregation in soils[J]. Plant and Soil, 1994, 159(1): 115-121. |
15 | MILLER R M, JASTROW J D. Mycorrhizal fungi influence soil structure[M]// KAPULNIK Y, DOUDS D D. Arbuscular mycorrhizas: physiology and function. Dordrecht: Springer, 2000: 3-18. |
16 | ELLIOTT E T, COLEMAN D C. Let the soil work for us[J]. Ecological Bulletins, 1988(39): 23-32. |
17 | SHIPITALO M J, PROTZ R. Chemistry and micromorphology of aggregation in earthworm casts[J]. Geoderma, 1989, 45(3/4): 357-374. |
18 | MORA P, SEUGé C, CHOTTE J L, et al. Physico-chemical typology of the biogenic structures of termites and earthworms: a comparative analysis[J]. Biology and Fertility of Soils, 2003, 37(4): 245-249. |
19 | GOLCHIN A, OADES J M, SKJEMSTAD J O, et al. Soil structure and carbon cycling[J]. Soil Research, 1994, 32(5): 1 043-1 068. |
20 | SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2 099-2 103. |
21 | SCHULZE E D, FREIBAUER A. Carbon unlocked from soils[J]. Nature, 2005, 437(7 056): 205-206. |
22 | SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689. |
23 | BALESDENT J, CHENU C, BALABANE M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil and Tillage Research, 2000, 53(3/4): 215-230. |
24 | JASTROW J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676. |
25 | RABBIA S M F, LOCKWOODA P V, DANIELA H. How do microaggregates stabilize soil organic matter?[C]// 19th world congress of soil science. Brisbane: Australian Society of Soil Science Incorporated, 2010: 4 413-4 416. |
26 | KANG J, QU C C, CHEN W L, et al. Organo-organic interactions dominantly drive soil organic carbon accrual[J]. Global Change Biology, 2024, 30(1). DOI:10.1111/gcb.17147 . |
27 | SIX J, PAUSTIAN K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9. |
28 | BANWART S A, NOELLEMEYER E, MILNE E. Soil carbon—science, management and policy for multiple benefits[M]. Wallingford: Scientific Committee on Problems of the Environment (SCOPE) Series, 2014. |
29 | PAN Genxing, LU Haifei, LI Lianqing, et al. Soil carbon sequestration with bioactivity: a new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951. |
29 | 潘根兴,陆海飞,李恋卿,等. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951. |
30 | YANG X F, RICHMOND M C, SCHEIBE T D, et al. Flow partitioning in fully saturated soil aggregates[J]. Transport in Porous Media, 2014, 103(2): 295-314. |
31 | PENG X H, ZHU Q H, ZHANG Z B, et al. Combined turnover of carbon and soil aggregates using rare Earth oxides and isotopically labelled carbon as tracers[J]. Soil Biology and Biochemistry, 2017, 109: 81-94. |
32 | ZHAO Z, LIU C, YAN M, et al. Understanding and enhancing soil conservation of water and life[J]. Soil Science and Environment, 2023, 2. DOI:10.48130/SSE-2023-0009 . |
33 | PAN Genxing. Soil science of Earth surface systems[M]. Beijing: Geological Publishing House, 2000. |
33 | 潘根兴. 地球表层系统土壤学[M]. 北京: 地质出版社, 2000. |
34 | CáRDENAS J P, SANTIAGO A, TARQUIS A M, et al. Soil porous system as heterogeneous complex network[J]. Geoderma, 2010, 160(1): 13-21. |
35 | LI Z, KRAVCHENKO A N, CUPPLES A, et al. Composition and metabolism of microbial communities in soil pores[J]. Nature Communications, 2024, 15(1). DOI:10.1038/s41467-024-47755-x . |
36 | SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7 367): 49-56. |
37 | LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7 580): 60-68. |
38 | SMITH P, HOUSE J I, BUSTAMANTE M, et al. Global change pressures on soils from land use and management[J]. Global Change Biology, 2016, 22(3): 1 008-1 028. |
39 | SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. |
40 | CAMBARDELLA C A, ELLIOTT E T. Methods for physical separation and characterization of soil organic matter fractions[J]. Geoderma, 1993, 56(1/2/3/4): 449-457. |
41 | FERNáNDEZ-UGALDE O, BARRé P, HUBERT F, et al. Clay mineralogy differs qualitatively in aggregate-size classes: clay-mineral-based evidence for aggregate hierarchy in temperate soils[J]. European Journal of Soil Science, 2013, 64(4): 410-422. |
42 | ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
43 | ELLIOTT E T, PALM C A, REUSS D E, et al. Organic matter contained in soil aggregates from a tropical chronosequence: correction for sand and light fraction[J]. Agriculture, Ecosystems & Environment, 1991, 34(1/2/3/4): 443-451. |
44 | CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic—matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
45 | YUDINA A, KUZYAKOV Y. Dual nature of soil structure: the unity of aggregates and pores[J]. Geoderma, 2023, 434. DOI:10.1016/j.geoderma.2023.116478.4 . |
46 | YUDINA A, KUZYAKOV Y. Saving the face of soil aggregates[J]. Global Change Biology, 2019, 25(11): 3 574-3 577. |
47 | LI Z C, RUI Z P, ZHANG D X, et al. Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, Eastern China[J]. Applied Soil Ecology, 2019, 138: 262-273. |
48 | ALLISON S D, JASTROW J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3 245-3 256. |
49 | BEARE M H, RUSSELL B R. A comparison of methods for measuring water-stable aggregates: implications for determining environmental effects on soil structure[J]. Geoderma, 1993, 56(1/2/3/4): 87-104. |
50 | FELDE V J M N L, SCHWEIZER S A, BIESGEN D, et al. Wet sieving versus dry crushing: soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient[J]. European Journal of Soil Science, 2021, 72(2): 810-828. |
51 | GICHANGI E M, NJARUI D M G, GHIMIRE S R, et al. Effects of cultivated brachiaria grasses on soil aggregation and stability in the semi-arid tropics of Kenya[J]. Tropical and Subtropical Agroecosystems, 2016, 19(2): 205-217. |
52 | DEVINE S, MARKEWITZ D, HENDRIX P, et al. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades[J]. PLoS ONE, 2014, 9(1). DOI: 10.1371/journal.pone.0084988 . |
53 | LITTRELL J, XU S T, OMONDI E, et al. Long-term organic management combined with conservation tillage enhanced soil organic carbon accumulation and aggregation[J]. Soil Science Society of America Journal, 2021, 85(5): 1 741-1 754. |
54 | ZHOU Hu, Yizhong Lü, YANG Zhichen, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1 973-1 979. |
54 | 周虎, 吕贻忠, 杨志臣, 等. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学, 2007, 40(9): 1 973-1 979. |
55 | TIAN S Y, ZHU B J, YIN R, et al. Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology and Biochemistry, 2022, 165. DOI:10.1016/j.soilbio.2021.108533 . |
56 | SHIN S S, PARK S D, CHOI B K. Universal power law for relationship between rainfall kinetic energy and rainfall intensity[J]. Advances in Meteorology, 2016, 2016. DOI:10.1155/2016/2494681 . |
57 | BACH E M, HOFMOCKEL K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology and Biochemistry, 2014, 69: 54-62. |
58 | CHEN S T, FENG X, LIN Q M, et al. Pool complexity and molecular diversity shaped topsoil organic matter accumulation following decadal forest restoration in a karst terrain[J]. Soil Biology and Biochemistry, 2022, 166. DOI:10.1016/j.soilbio.2022.108553 . |
59 | ZHAO Z, FENG X, LIU C, et al. Soil organic carbon storage, microbial abundance and pore structure characteristics of macroaggregates across a soil-landscape sequence in a subtropical hilly watershed[J]. Catena, 2024, 242. DOI:10.1016/j.catena.2024.108056 . |
60 | TIESSEN H, STEWART J W B. Light and electron microscopy of stained microaggregates: the role of organic matter and microbes in soil aggregation[J]. Biogeochemistry, 1988, 5(3): 312-322. |
61 | STEMMER M, GERZABEK M H, KANDELER E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication[J]. Soil Biology and Biochemistry, 1998, 30(1): 9-17. |
62 | JOCTEUR M L, LADD J N, FITZPATRICK R W, et al. Components and microbial biomass content of size fractions in soils of contrasting aggregation[J]. Geoderma, 1991, 50(1/2): 37-62. |
63 | KANDELER E, STEMMER M, KLIMANEK E M. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management[J]. Soil Biology and Biochemistry, 1999, 31(2): 261-273. |
64 | SESSITSCH A, WEILHARTER A, GERZABEK M H, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied and Environmental Microbiology, 2001, 67(9): 4 215-4 224. |
65 | SMITH A P, MARíN-SPIOTTA E, de GRAAFF M A, et al. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology and Biochemistry, 2014, 77: 292-303. |
66 | ASHMAN M R, HALLETT P D, BROOKES P C. Are the links between soil aggregate size class, soil organic matter and respiration rate artefacts of the fractionation procedure?[J]. Soil Biology and Biochemistry, 2003, 35(3): 435-444. |
67 | FENG X, XIA X, CHEN S T, et al. Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil[J]. Geoderma, 2022, 409. DOI: 10.1016/j.geoderma.2021.115643 . |
68 | BULLOCK P, FEDOROFF N, JONGERIUS A. Handbook for soil thin section description[M]. Albrighton: Waine, 1985. |
69 | TANG Keli, HE Xiubin. Soil micromorphology and its application[M]. Beijing: Science Press, 2022. |
69 | 唐克丽, 贺秀斌. 土壤微形态学及其应用[M]. 北京: 科学出版社, 2022. |
70 | HUANG Ruicai. Development and application of soil micromorphology[M]. Beijing: Higher Education Press, 1991. |
70 | 黄瑞采. 土壤微形态学发展及应用[M]. 北京: 高等教育出版社, 1991. |
71 | de GRYZE S, JASSOGNE L, SIX J, et al. Pore structure changes during decomposition of fresh residue: X-ray tomography analyses[J]. Geoderma, 2006, 134(1/2): 82-96. |
72 | YOUNG I M, CRAWFORD J W, RAPPOLDT C. New methods and models for characterising structural heterogeneity of soil[J]. Soil and Tillage Research, 2001, 61(1): 33-45. |
73 | KRAVCHENKO A, OTTEN W, GARNIER P, et al. Soil aggregates as biogeochemical reactors: not a way forward in the research on soil-atmosphere exchange of greenhouse gases[J]. Global Change Biology, 2019, 25(7): 2 205-2 208. |
74 | DEXTER A R. Advances in characterization of soil structure[J]. Soil and Tillage Research, 1988, 11(3/4): 199-238. |
75 | SCHLüTER S, SAMMARTINO S, KOESTEL J. Exploring the relationship between soil structure and soil functions via pore-scale imaging[J]. Geoderma, 2020, 370. DOI: 10.1016/j.geoderma.2020.114370 . |
76 | VOGEL H J, BALSEIRO-ROMERO M, KRAVCHENKO A, et al. A holistic perspective on soil architecture is needed as a key to soil functions[J]. European Journal of Soil Science, 2022, 73(1). DOI: 10.1111/ejss.13152 . |
77 | WEIL R R, BRADY N C. The nature and properties of soils[M]. 15th. New Jersey: Pearson, 2017. |
78 | WANG Panfeng, DING Qishuo, DING Weimin, et al. A measurement method of soil porosity[J]. Experimental Technology and Management, 2009, 26(7): 50-51. |
78 | 汪攀峰, 丁启朔, 丁为民,等. 一种土壤孔隙率(比)的测定方法[J]. 实验技术与管理, 2009, 26(7): 50-51. |
79 | MA Chong, FENG Xiao, DING Yuanjun, et al. Nano-pore distribution of biochar and soil aggregates revealed with the technology of nuclear magnetic resonance cryoporometry[J]. Chinese Journal of Soil Science, 2018, 49(3): 582-587. |
79 | 马冲, 冯潇, 丁元君, 等. 核磁冻融微孔度技术应用于测定生物质炭及土壤团聚体纳米孔隙[J]. 土壤通报, 2018, 49(3): 582-587. |
80 | CRESTANA S, CESAREO R, MASCARENHAS S. Using a computed tomography miniscanner in soil science[J]. Soil Science, 1986, 142(1): 56-61. |
81 | CRESTANA S, MASCARENHAS S, POZZI-MUCELLI R S. Static and dynamic three-dimensional studies of water in soil using computed tomographic scanning[J]. Soil Science, 1985, 140(5): 326-332. |
82 | TAINA I A, HECK R J, ELLIOT T R. Application of X-ray computed tomography to soil science: a literature review[J]. Canadian Journal of Soil Science, 2008, 88(1): 1-19. |
83 | LOMBI E, SUSINI J. Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives[J]. Plant and Soil, 2009, 320(1): 1-35. |
84 | PETH S, HORN R, BECKMANN F, et al. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation—based microtomography[J]. Soil Science Society of America Journal, 2008, 72(4): 897-907. |
85 | ZHANG H, HE H L, GAO Y J, et al. Applications of Computed Tomography (CT) in environmental soil and plant sciences[J]. Soil and Tillage Research, 2023, 226. DOI: 10.1016/j.still.2022.105574 . |
86 | ANANYEVA K, WANG W, SMUCKER A J M, et al. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon?[J]. Soil Biology and Biochemistry, 2013, 57: 868-875. |
87 | WANG W, KRAVCHENKO A N, SMUCKER A J M, et al. Intra-aggregate pore characteristics: X-ray computed microtomography analysis[J]. Soil Science Society of America Journal, 2012, 76(4): 1 159-1 171. |
88 | ?YGARDEN L, KV?RNER J, JENSSEN P D. Soil erosion via preferential flow to drainage systems in clay soils[J]. Geoderma, 1997, 76(1/2): 65-86. |
89 | WIERMANN C, WERNER D, HORN R, et al. Stress/strain processes in a structured unsaturated silty loam luvisol under different tillage treatments in Germany[J]. Soil and Tillage Research, 2000, 53(2): 117-128. |
90 | LIPIEC J, HATANO R. Quantification of compaction effects on soil physical properties and crop growth[J]. Geoderma, 2003, 116(1/2): 107-136. |
91 | ZHANG Jing, CHEN Lin, ZHOU Hu, et al. Quantification of soil pore structure based on digital image technology: a review[J]. Soils,2023, 55(1): 21-29. |
91 | 张靖, 陈琳, 周虎, 等. 基于数字图像技术的土壤孔隙结构定量研究进展[J]. 土壤, 2023, 55(1): 21-29. |
92 | FENG Xiao. Exploring the linkage between soil organic matter accumulation and soil aggregation with emphasis on macroaggregate μCT tomography[D]. Nanjing: Nanjing Agricultural University, 2022. |
92 | 冯潇. 探索土壤团聚体发育与有机质积累的关系:聚焦宏团聚体孔隙微形貌特征[D]. 南京: 南京农业大学, 2022. |
93 | AL-RAOUSH R I, WILLSON C S. A pore-scale investigation of a multiphase porous media system[J]. Journal of Contaminant Hydrology, 2005, 77(1/2): 67-89. |
94 | DELERUE J F, LOMOV S V, PARNAS R S, et al. Pore network modeling of permeability for textile reinforcements[J]. Polymer Composites, 2003, 24(3): 344-357. |
95 | dal FERRO N, MORARI F. From real soils to 3D-printed soils: reproduction of complex pore network at the real size in a silty-loam soil[J]. Soil Science Society of America Journal, 2015, 79(4): 1 008-1 017. |
96 | OTTEN W, PAJOR R, SCHMIDT S, et al. Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries[J]. Soil Biology and Biochemistry, 2012, 51: 53-55. |
97 | KAUSCH M F, PALLUD C E. Modeling the impact of soil aggregate size on selenium immobilization[J]. Biogeosciences, 2013, 10(3): 1 323-1 336. |
98 | ZHOU H X, YU X L, CHEN C, et al. Evaluating hydraulic properties of biochar-amended soil aggregates by high-performance pore-scale simulations[J]. Soil Science Society of America Journal, 2018, 82(1): 1-9. |
99 | WANG F, ZHANG X X, NEAL A L, et al. Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes[J]. Soil and Tillage Research, 2022, 215. DOI: 10.1016/j.still.2021.105226 . |
100 | KRAVCHENKO A N, WANG A N W, SMUCKER A J M, et al. Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity[J]. Soil Science Society of America Journal, 2011, 75(5): 1 658-1 666. |
101 | LI Wenzhao, ZHOU Hu, CHEN Xiaomin, et al. Characterization of aggregate microstructures of paddy soils under different patterns of fertilization with synchrotron radiation micro-CT[J]. Acta Pedologica Sinica, 2014, 51(1): 67-74. |
101 | 李文昭, 周虎, 陈效民, 等. 基于同步辐射显微CT研究不同施肥措施下水稻土团聚体微结构特征[J]. 土壤学报, 2014, 51(1): 67-74. |
102 | MENON M, MAWODZA T, RABBANI A, et al. Pore system characteristics of soil aggregates and their relevance to aggregate stability[J]. Geoderma, 2020, 366. DOI: 10.1016/j.geoderma.2020.114259 . |
103 | JASSOGNE L, HETTIARACHCHI G, CHITTLEBOROUGH D, et al. Distribution and speciation of nutrient elements around micropores[J]. Soil Science Society of America Journal, 2009, 73(4): 1 319-1 326. |
104 | PARK E J, SUL W J, SMUCKER A J M. Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability[J]. Soil Biology and Biochemistry, 2007, 39(11): 2 758-2 768. |
105 | RILLIG M C, MULLER L A H, LEHMANN A. Soil aggregates as massively concurrent evolutionary incubators[J]. The ISME Journal, 2017, 11(9): 1 943-1 948. |
106 | TOTSCHE K U, RAY N, K?GEL-KNABNER I. Structure-function co-evolution during pedogenesis—microaggregate development and turnover in soils[J]. Journal of Plant Nutrition and Soil Science, 2024, 187(1): 5-16. |
107 | HARTMANN M, SIX J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth and Environment, 2023, 4(1): 4-18. |
/
〈 |
|
〉 |