寻找地球系统科学的突破口
收稿日期: 2024-07-18
修回日期: 2024-07-28
网络出版日期: 2024-09-10
Towards Research Breakthroughs in East System Science of China
Received date: 2024-07-18
Revised date: 2024-07-28
Online published: 2024-09-10
汪品先 , 郭正堂 , 焦念志 , 金之钧 , 王成善 . 寻找地球系统科学的突破口[J]. 地球科学进展, 2024 , 39(8) : 767 -771 . DOI: 10.11867/j.issn.1001-8166.2024.063
The recently published report “Earth System Science in China: The Development Strategy for 2035” identified three major areas for potential research breakthroughs:
Key words: Earth system; Marine carbon pump; Hydrological; Cycle; Subduction zone
1 | Research Group on the Development Strategy of Chinese Disciplines and Frontier Fields (2021-2035). Earth System Science in China: the development strategy for 2035[M]. Beijing: Science Press, 2024: 257. |
1 | “中国学科及前沿领域发展战略研究(2021—2035 )“项目组. 中国地球系统科学 2035 发展战略[M]. 北京:科学出版社,2024: 257. |
2 | JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8: 593-599. |
3 | WANG P X, LI Q Y, TIAN J, et al. Long-term cycles in the carbon reservoir of the Quaternary Ocean: a perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 119-143. |
4 | XIE Shucheng, JIAO Nianzhi, WANG Pinxian. Promoting studies on the geological evolution of marine biological carbon pumps[J]. Chinese Science Bulletin, 2022, 67(15): 1 597-1 599. |
4 | 谢树成, 焦念志, 汪品先. 加强海洋生物碳泵地质演化的研究[J]. 科学通报, 2022, 67(15): 1 597-1 599. |
5 | WANG P X, WANG B, CHENG H, et al. The global monsoon across time scales: mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174: 84-121. |
6 | ZHU Maoyan, GUO Zhengtang, WANG Pinxian. Evolution of water cycle in deep time: current research status and key questions[J]. Chinese Science Bulletin, 2023, 68(12): 1 425-1 442. |
6 | 朱茂炎,郭正堂,汪品先. 水循环的深时地质演变:研究现状与关键问题[J].科学通报,2023, 68(12): 1 425-1 442. |
7 | P?LIKE H, NORRIS R D, HERRLE J O, et al. The heartbeat of the Oligocene climate system[J]. Science, 2006, 314(5 807): 1 894-1 898. |
8 | GUO Z T, BERGER A, YIN Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records[J]. Climate of the Past, 2009, 5(1): 21-31. |
9 | RIDGWAY K R, DUNN J R. Observational evidence for a southern hemisphere oceanic supergyre[J]. Geophysical Research Letters, 2007, 34(13). DOI: 10.1029/2007GL030392 . |
10 | MITCHELL R N, KILIAN T M, EVANS D A D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time[J]. Nature, 2012, 482: 208-211. |
11 | ZHU Rixiang, XU Yigang. The subduction of the Western Pacific plate and the destruction of the North China Craton[J]. Science China: Earth Sciences, 2019, 49(9): 1 346-1 356. |
11 | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1 346-1 356. |
12 | WANG P X, HUANG C Y, LIN J, et al. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019, 6(5): 902-913. |
13 | JIN Z J, ZHANG L P, YANG L, et al. A preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins[J]. Journal of Petroleum Science and Engineering, 2004, 41(1/2/3): 45-55. |
/
〈 |
|
〉 |