全球地表气温对CO2 浓度变化的非对称响应:能量平衡模式研究
收稿日期: 2024-01-15
修回日期: 2024-05-10
网络出版日期: 2024-07-15
基金资助
国家自然科学基金项目(42141019)
Asymmetric Response of Global Temperature to Changes in CO2 Concentration: Energy Balance Models Study
Received date: 2024-01-15
Revised date: 2024-05-10
Online published: 2024-07-15
Supported by
the National Natural Science Foundation of China(42141019)
气候系统属性可影响二氧化碳(CO2)浓度变化背景下全球地表气温演变的非对称性,但目前仍不清楚哪些属性的贡献相对关键。因第六次国际耦合模式比较计划(CMIP6)试验样本不足,基于45个CMIP6模式数据,逐一构建了快速、再现能力理想的两层能量模型,共开展了391组试验。该模型试验结果显示,在对称的CO2浓度上升和下降演变下,平衡气候响应、深海热容量和海表—深海热传输系数对全球地表气温演变的非对称性起主要贡献,它们主要通过改变CO2浓度下降期全球地表气温达峰后的降温速度来实现。因此,加深对气候系统平衡气候响应、深海热容量和海表—深海热传输系数的理解,有助于更科学地实现巴黎协定目标。
屈侠 , 黄刚 . 全球地表气温对CO2 浓度变化的非对称响应:能量平衡模式研究[J]. 地球科学进展, 2024 , 39(6) : 632 -646 . DOI: 10.11867/j.issn.1001-8166.2024.042
Climate system properties influence asymmetry in global surface air temperature evolution under changes in carbon dioxide (CO2) concentration; however, it remains unclear which properties contribute more significantly. Owing to the insufficient number of samples from the Coupled Model Intercomparison Project Phase 6 (CMIP6) experiments, this study utilized the output of 45 CMIP6 models and constructed 391 sets of experiments using a two-layer energy balance model that was both rapid and reproducible. The experimental results demonstrate that the Equilibrium Climate Sensitivity (ECS), ocean heat capacity, and coefficient of vertical heat exchange in the ocean play primary roles in the asymmetry of the Global Surface Air Temperature (GSAT) evolution under a fixed CO2 concentration rise and fall. This was achieved by altering the cooling rate after the GSAT peak during the CO2 concentration decline period. Therefore, a deeper understanding of the ECS, ocean heat capacity, and the coefficient of vertical heat exchange in the ocean may facilitate a more scientifically realistic achievement of the goals of the Paris Agreement.
1 | IPCC. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:2 391. |
2 | CAO L, GOVINDASAMY B, CALDEIRA K. Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?[J]. Geophysical Research Letters, 2011, 38(6). DOI: 10.1029/2011GL046713 . |
3 | WU Peili, WOOD R, RIDLEY J, et al. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown[J]. Geophysical Research Letters,2010,37. DOI:10.1029/2010GL043730 . |
4 | YEH S W, SONG S Y, ALLAN R P, et al. Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway[J]. NPJ Climate and Atmospheric Science, 2021, 4. DOI:10.1038/s41612-021-00206-6 . |
5 | HELD I M, SODEN B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21). DOI: 10.1175/JCLI3990.1 . |
6 | ZHU Huanhuan, JIANG Sheng, JIANG Zhihong. Projection of climate extremes over China in response to 1.5/2.0 ℃ global warming based on the reliability ensemble averaging[J]. Advances in Earth Science, 2022, 37(6): 612-626. |
6 | 朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球1.5/2.0 ℃变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.] |
7 | BOUCHER O, HALLORAN P R, BURKE E J, et al. Reversibility in an Earth system model in response to CO2 concentration changes[J]. Environmental Research Letters, 2012, 7(2). DOI:10.1088/1748-9326/7/2/024013 . |
8 | KAMAE Y, OGURA T, WATANABE M, et al. Robust cloud feedback over tropical land in a warming climate[J]. Journal of Geophysical Research (Atmospheres), 2016, 121(6): 2 593-2 609. |
9 | QU X, HUANG G. CO2-induced heat source changes over the Tibetan Plateau in boreal summer-part II: the effects of CO2 direct radiation and uniform sea surface warming[J]. Climate Dynamics, 2020, 55(5): 1 631-1 647. |
10 | ANDREWS T, FORSTER P, BOUCHER O, et al. Precipitation, radiative forcing and global temperature change[J]. Geophysical Research Letters, 2010, 37(14). DOI:10.1029/2010GL043991 . |
11 | EHLERT D, ZICKFELD K. Irreversible ocean thermal expansion under carbon dioxide removal[J]. Earth System Dynamics, 2018, 9(1): 197-210. |
12 | WU P L, RIDLEY J, PARDAENS A, et al. The reversibility of CO2 induced climate change[J]. Climate Dynamics, 2015, 45(3): 745-754. |
13 | KIM S K, SHIN J, AN S I, et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing[J]. Nature Climate Change, 2022, 12: 834-840. |
14 | SONG S Y, YEH S W, AN S I, et al. Asymmetrical response of summer rainfall in East Asia to CO2 forcing[J]. Science Bulletin, 2022, 67(2): 213-222. |
15 | ZHANG S Q, QU X, HUANG G, et al. Asymmetric response of South Asian summer monsoon rainfall in a carbon dioxide removal scenario[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00338-x . |
16 | TANG Mingxiu, SUN Shao, ZHU Xiufang, et al. CMIP6 assessment of changes in hazard of future rainstorms in China[J]. Advances in Earth Science, 2022, 37(8): 519-534. |
16 | 唐明秀, 孙劭, 朱秀芳, 等. 基于CMIP6的中国未来暴雨危险性变化评估[J]. 地球科学进展, 2022, 37(5): 519-534. |
17 | SANDERSON B, O’NEILL B, TEBALDI C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016, 43: 7 133-7 142. |
18 | XU Y Y, RAMANATHAN V. Well below 2 ℃: mitigation strategies for avoiding dangerous to catastrophic climate changes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(39): 10 315-10 323. |
19 | HELD I M, WINTON M, TAKAHASHI K, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing[J]. Journal of Climate, 2010, 23(9): 2 418-2 427. |
20 | JELTSCH-TH? M A, STOCKER T, JOOS F. Hysteresis of the Earth system under positive and negative CO2 emissions[J]. Environmental Research Letters, 2020, 15(12). DOI:10.1088/1748-9326/abc4af . |
21 | KUG J S, OH J H, AN S I, et al. Hysteresis of the intertropical convergence zone to CO2 forcing[J]. Nature Climate Change, 2022, 12: 47-53. |
22 | KELLER D, LENTON A, SCOTT V, et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11(3): 1 133-1 160. |
23 | GREGORY J M, INGRAM W J, PALMER M A, et al. A new method for diagnosing radiative forcing and climate sensitivity [J]. Geophysical Research Letters, 2004, 31(3). DOI:10.1029/2003GL018747 . |
24 | ANDREWS T, GREGORY J M, WEBB M J, et al. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models[J]. Geophysical Research Letters, 2012, 39(9). DOI: 10.1029/2012GL051607 . |
25 | GEOFFROY O, SAINT-MARTIN D. Equilibrium- and transient-state dependencies of climate sensitivity: are they important for climate projections?[J]. Journal of Climate, 2019, 33(5):1 863-1 879. |
26 | GEOFFROY O, SAINT-MARTIN D, BELLON G, et al. Transient climate response in a two-layer energy-balance model. part II: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs[J]. Journal of Climate, 2013, 26(6): 1 859-1 876. |
27 | GEOFFROY O, SAINT-MARTIN D, BELLON G, et al. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments[J]. Journal of Climate,2013,26(6):1 841-1 857. |
28 | EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958. |
29 | GREGORY J M, ANDREWS T, GOOD P. The inconstancy of the transient climate response parameter under increasing CO2 [J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2 054). DOI:10.1098/rsta.2014.0417 . |
/
〈 |
|
〉 |