综述与评述

海平面上升对河口感潮沼泽湿地CH4和CO2产生和排放的影响:机制与复杂性

  • 仝川 ,
  • 罗敏 ,
  • 胡敏杰 ,
  • 王纯 ,
  • 刘白贵 ,
  • 展鹏飞
展开
  • 1.湿润亚热带生态—地理过程教育部重点实验室,福建师范大学,福建 福州 350117
    2.福建师范大学 地理科学学院,福建 福州 350117
    3.福州大学 环境与安全工程学院,福建 福州 350116
仝川,教授,主要从事河口湿地生物地球化学循环研究. E-mail:tongch@fjnu.edu.cn

收稿日期: 2023-12-26

  修回日期: 2024-03-05

  网络出版日期: 2024-06-03

基金资助

国家重点研发计划项目(2022YFC3105401);国家自然科学基金项目(41877335)

Effects of Sea Level Rise on Production and Emission of CH4 and CO2 in Estuarine Tidal Marshes: Mechanism and Complexity

  • Chuan TONG ,
  • Min LUO ,
  • Minjie HU ,
  • Chun WANG ,
  • Baigui LIU ,
  • Pengfei ZHAN
Expand
  • 1.Key Laboratory of Humid Sub-Tropical Eco-Geographical Processes (Ministry of Education), Fujian Normal University, Fuzhou 350117, China
    2.School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
    3.College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
TONG Chuan, Professor, research area includes biogeochemical cycle in estuarine wetland. E-mail: tongch@fjnu.edu.cn

Received date: 2023-12-26

  Revised date: 2024-03-05

  Online published: 2024-06-03

Supported by

the National Key Research and Development Program of China(2022YFC3105401);The National Natural Science Foundation of China(41877335)

摘要

海平面上升直接改变河口感潮沼泽的水文和盐度特征,是河口感潮沼泽面临的主要环境问题之一。总结了海平面上升对河口感潮沼泽碳动态影响的研究方法和实验平台,分别从海平面上升引发的盐水入侵和水淹增加2个方面综述海平面上升对河口感潮沼泽CH4和CO2排放通量、产生速率和土壤有机碳厌氧矿化途径等方面的影响及其机制。盐水入侵显著降低河口感潮淡水沼泽CH4产生速率和排放通量,导致土壤有机碳厌氧矿化途径从CH4产生为主向硫酸盐异化还原为主转变,然而盐水入侵对CO2排放通量的影响具有不确定性。水淹增加对河口感潮沼泽CH4和CO2排放通量影响的报道相对较少,已有研究表明CO2排放通量随着水淹高度增加而降低。最后提出海平面上升对河口感潮沼泽碳动态影响研究应加强的领域,以期为海平面上升对河口感潮沼泽含碳温室气体动态的影响研究提供参考。

本文引用格式

仝川 , 罗敏 , 胡敏杰 , 王纯 , 刘白贵 , 展鹏飞 . 海平面上升对河口感潮沼泽湿地CH4和CO2产生和排放的影响:机制与复杂性[J]. 地球科学进展, 2024 , 39(5) : 441 -453 . DOI: 10.11867/j.issn.1001-8166.2024.029

Abstract

Sea-Level Rise (SLR) directly changes the hydrology and salinity of estuarine tidal wetlands and is one of the primary drivers of global change that significantly impacts ecosystem processes. Herein, various methodologies and experimental facilities (marsh organs, weirs, and flow-through mesocosms) for manipulating SLR are systematically reviewed. This study provides a comprehensive summary of the effects and mechanisms associated with SLR regarding the fluxes and production rates of CH4 and CO2, and the pathways and rates of soil organic carbon mineralization from the perspectives of SLR-saltwater intrusion and inundation increase. Saltwater intrusion due to SLR notably decreases CH4 production rates and fluxes. It induces a shift in the pathways of soil organic carbon mineralization, transitioning from CH4 production to microbial SO42- reduction in tidal freshwater marshes. The main mechanism reducing saltwater intrusion-induced CH4 flux is the increased presence of the electron acceptor SO42-, which hinders soil CH4 production. The impact of SLR through saltwater intrusion on CO2 emissions in tidal freshwater marshes exhibits distinct uncertainty. Owing to the inherent challenges in experimentally manipulating SLR in situ, few reports concerning the effects of SLR-related inundation on CH4 and CO2 fluxes and production rates exist. However, some studies have suggested that an increase in inundation height leads to a reduction in CO2 emissions. Additionally, this study consolidates information surrounding electron acceptors and microbial mechanisms associated with SLR that influence the pathways and rates of soil organic carbon mineralization in coastal tidal wetlands. Finally, this study outlines the specific domains that warrant further exploration in future research on the impact of SLR on the production and emission of carbon greenhouse gases in estuarine tidal marshes.

参考文献

1 LARSEN L, MOSEMAN S, SANTORO A E, et al. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland[J]. Eco-DAS VIII, 2010: 67-92. DOI:10.4319/ecodas.2010.978-0-9845591-1-4.67 .
2 IPCC. Climate change 2021: the physical science basis[M]// Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021.
3 HINKEL J, JAEGER C, NICHOLLS R J, et al. Sea-level rise scenarios and coastal risk management [J]. Nature Climate Change, 2015, 5: 188-190.
4 ODUM W E. Comparative ecology of tidal freshwater and salt marshes [J]. Annual Review of Ecology and Systematics, 1988, 19(1): 147-176.
5 KNOWLES N. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales [J]. Water Resources Research, 2002, 38(12). DOI:10.1029/2001WR000360 .
6 CRAFT C, CLOUGH J, EHMAN J, et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services[J]. Frontiers in Ecology and the Environment, 2009, 7(2): 73-78.
7 ELSEY-QUIRK T, SELISKAR D M, SOMMERFIELD C K, et al. Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications [J]. Wetlands, 2011, 31: 87-99.
8 SHARPE P J, BALDWIN A H. Tidal marsh plant community response to sea-level rise: a mesocosm study [J]. Aquatic Botany, 2012, 101: 34-40.
9 HILL T D, ANISFELD S C. Coastal wetland response to sea level rise in connecticut and New York[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 185-193.
10 GE Z M, CAO H B, CUI L F, et al. Future vegetation patterns and primary production in the coastal wetlands of East China under sea level rise, sediment reduction, and saltwater intrusion [J]. Journal of Geophysical Research Biogeosciences, 2015, 120(10): 1 923-1 940.
11 SCHILE L M, CALLAWAY J C, SUDING K N, et al. Can community structure track sea-level rise? Stress and competitive controls in tidal wetlands [J]. Ecology and Evolution, 2017, 7(4): 1 276-1 285.
12 WESTON N B, VILE M A, NEUBAUER S C, et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 2011, 102(1): 135-151.
13 KRAUSS K W, WHITBECK J L. Soil greenhouse gas fluxes during wetland forest retreat along the lower savannah river, Georgia (USA)[J]. Wetlands, 2012, 32(1): 73-81.
14 NEUBAUER S C. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology [J]. Estuaries and Coasts, 2013, 36: 491-507.
15 TONG C, LUO M, HUANG J F, et al. Greenhouse gas fluxes and porewater geochemistry following short-term pulses of saltwater and Fe(III) in a subtropical tidal freshwater estuarine marsh[J]. Geoderma, 2020, 369. DOI:10.1016/j.geoderma.2020.114340 .
16 CHERRY J A, RAMSEUR G S, SPARKS E L, et al. Testing sea-level rise impacts in tidal wetlands: a novel in situ approach[J]. Methods in Ecology and Evolution, 2015, 6(12): 1 443-1 451.
17 SPALDING E A, HESTER M W. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise [J]. Estuaries and Coasts, 2007, 30: 214-225.
18 CHAMBERS L G, OSBORNE T Z, REDDY K R. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment[J]. Biogeochemistry, 2013, 115(1): 363-383.
19 TONG C, CADILLO-QUIROZ H, ZENG Z H, et al. Changes of community structure and abundance of methanogens in soils along a freshwater-brackish water gradient in subtropical estuarine marshes [J]. Geoderma, 2017, 299: 101-110.
20 LUO M, ZHAI Z F, YE R Z, et al. Carbon mineralization in tidal freshwater marsh soils at the intersection of low-level saltwater intrusion and ferric iron loading [J]. Catena, 2020, 193. DOI:10.1016/j.catena.2020.104644 .
21 CHAMBERS L G, REDDY K R, OSBORNE T Z. Short-term response of carbon cycling to salinity pulses in a freshwater wetland [J]. Soil Science Society of America Journal, 2011, 75(5): 2 000-2 007.
22 WANG C, TONG C, CHAMBERS L G, et al. Identifying the salinity thresholds that impact greenhouse gas production in subtropical tidal freshwater marsh soils[J]. Wetlands, 2017, 37(3): 559-571.
23 MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level [J]. Ecology, 2002, 83: 2 869-2 877.
24 MUDD S M, HOWELL S M, MORRIS J T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation [J]. Estuarine, Coastal and Shelf Science, 2009, 82: 377-389.
25 KIRWAN M L, LANGLEY J A, GUNTENSPERGEN G R, et al. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes [J]. Biogeosciences, 2013, 10: 1 869-1 876.
26 LANGLEY J A, MOZDZER T J, SHEPARD K A, et al. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise [J]. Global Change Biology, 2013, 19(5): 1 495-1 503.
27 TAN Fengfeng, LUO Min, ZHANG Changwei, et al. Plants moderate the effects of emission fluxes of CO2 and CH4 on increased flooding in wetland soils [J]. China Environmental Science, 2023, 43(1): 424-435.
27 谭凤凤, 罗敏, 张昌威, 等. 植物调节湿地CO2和CH4排放对淹水增强的响应[J]. 中国环境科学, 2023, 43(1): 424-435.
28 LIU B G, TONG C, FANG Y Y, et al. Interactive effects of sea-level rise and nitrogen enrichment on the decay of different plant residues in an oligohaline estuarine marsh [J]. Estuarine, Coastal and Shelf Science, 2022, 270. DOI:10.1016/j.ecss.2022.107835 .
29 STACHELEK J, KELLY S P, SKLAR F H, et al. In situ simulation of sea-level rise impacts on coastal wetlands using a flow-through mesocosm approach [J]. Methods in Ecology and Evolution, 2018, 9(8): 1 908-1 915.
30 LIU Y X, LUO M, CHEN J, et al. Root iron plaque abundance as an indicator of carbon decomposition rates in a tidal freshwater wetland in response to salinity and flooding [J]. Soil Biology & Biochemistry, 2021, 162. DOI:10.1016/j.soilbio.2021.108403 .
31 LI Jing, HUANG Jiafang, LUO Min, et al. Effect of increasing tidewater inundation on porewater geochemistries and CO2 and CH4 effluxes in the tidal freshwater marshes of the Min-jiang River Estuary, southeast China [J]. Environmental Science, 2019, 40(12): 5 494-5 502.
31 李敬, 黄佳芳, 罗敏, 等. 淹水增加对闽江河口淡水潮汐湿地孔隙水地球化学特征及CO2和CH4排放通量的影响 [J]. 环境科学, 2019, 40(12): 5 494-5 502.
32 DANG C, MORRISSEY E M, NEUBAUER S C, et al. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands[J]. Global Change Biology, 2019, 25(2): 549-561.
33 HOPPLE A M, PENNINGTON S C, MEGONIGAL J P, et al. Disturbance legacies regulate coastal forest soil stability to changing salinity and inundation: a soil transplant experiment[J]. Soil Biology and Biochemistry, 2022, 169. DOI:10.1016/j.soilbio.2022.108675 .
34 POFFENBARGER H J, NEEDELMAN B A, MEGONIGAL J P. Salinity influence on methane emissions from tidal marshes [J]. Wetlands, 2011, 31(5): 831-842.
35 DELAUNE R D, SMITH C J, PATRICK W H. Methane release from Gulf coast wetlands[J]. Tellus B, 1983, 35B(1): 8-15.
36 SMITH C J, DELAUNE R D, PATRICK W H. Carbon dioxide emission and carbon accumulation in coastal wetlands[J]. Estuarine, Coastal and Shelf Science, 1983, 17(1): 21-29.
37 BARTLETT K B, BARTLETT D S, HARRISS R C, et al. Methane emissions along a salt marsh salinity gradient[J]. Biogeochemistry, 1987, 4(3): 183-202.
38 NYMAN J A, DELAUNE R D. CO2 emission and soil Eh responses to different hydrological conditions in fresh brackish, and saline marsh soils [J]. Limnology and Oceanography, 1991, 36(7): 1 406-1 414.
39 PURVAJA R, RAMESH R. Natural and anthropogenic methane emission from coastal wetlands of South India [J]. Environmental Management, 2001, 27: 547-557.
40 DAUSSE A, GARBUTT A, NORMAN L, et al. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient [J]. Estuarine, Coastal and Shelf Science, 2012, 100(20): 83-92.
41 WESTON N B, NEUBAUER S C, VELINSKY D J, et al. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient[J]. Biogeochemistry, 2014, 120(1): 163-189.
42 WILSON B J, MORTAZAVI B, KIENE R P. Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary [J]. Biogeochemistry, 2015, 123(3): 329-347.
43 GUNN C M. Methane emissions along a salinity gradient of a restored salt marsh in Casco Bay, Maine [D/OL]. Bates College, Lewiston, 2016. [2023-10-25]. .
44 HOLM G O, PEREZ B C, MCWHORTER D E, et al. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: implications for coastal wetland carbon projects [J]. Wetlands, 2016, 36: 401-413.
45 HU M J, REN H C, REN P, et al. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River Estuary, southeastern China[J]. Journal of Environmental Sciences, 2017, 52: 210-222.
46 MISHRA S R, PATTNAIK P, SETHUNATHAN N, et al. Anion-mediated salinity affecting methane production in a flooded alluvial soil [J]. Geomicrobiology Journal, 2003, 20: 579-586.
47 NEUBAUER S C, GIVLER K, VALENTINE S, et al. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry [J]. Ecology, 2005, 86(12): 3 334-3 344.
48 WESTON N B, DIXON R E, JOYE S B. Rami?cations of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization [J]. Journal of Geophysical Research: Biogeosciences, 2006, 111. DOI:10.1029/2005JG000071 .
49 MARTON J M, HERBERT E R, CRAFT C B. Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils [J]. Wetlands, 2012, 32: 347-357.
50 BALDWIN D S, REES G N, MITCHELL A M, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland[J]. Wetlands, 2006, 26(2): 455-464.
51 SUTTON-GRIER A E, KELLER J K, KOCH R, et al. Electron donors and acceptors influence anaerobic soil organic matter mineralization in tidal marshes [J]. Soil Biology and Biochemistry, 2011, 43: 1 576-1 583.
52 BERNER R. Early diagenesis: a theoretical approach [M]. New Jersey, Princeton: Princeton University Press, 1980.
53 LUO M, HUANG J F, ZHU W F, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review [J]. Hydrobiologia, 2019, 827: 31-49.
54 SEO D C, YU K W, DELAUNE R D. Influence of salinity level on sediment denitrification in a Louisiana Estuary receiving diverted Mississippi River water[J]. Archives of Agronomy and Soil Science, 2008, 54(3): 249-257.
55 KRISTENSEN E, BOUILLON S, DITTMAR T, et al. Organic carbon dynamics in mangrove ecosystems: a review [J]. Aquatic Botany, 2008, 89(2): 201-219.
56 LUO M, ZENG C S, TONG C, et al. Iron reduction along an inundation gradient in a tidal sedge (Cyperus malaccensis) marsh: the rates, pathways, and contributions to anaerobic organic matter mineralization [J]. Estuaries and Coasts, 2016, 39: 1 679-1 693.
57 SCHOEPFER V A, BERNHARDT E S, BURGIN A J. Iron clad wetlands: soil iron-sulfur buffering determines coastal wetland response to salt water incursion[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(12): 2 209-2 219.
58 HANSON A, JOHNSON R, WIGAND C, et al. Responses of Spartina alterniflora to multiple stressors: changing precipitation patterns, accelerated sea level rise, and nutrient enrichment [J]. Estuaries and Coasts, 2016, 39: 1 376-1 385.
59 FETTROW S, VARGAS R, SEYFFERTH A L. Experimentally simulated sea level rise destabilizes carbon-mineral associations in temperate tidal marsh soil[J]. Biogeochemistry, 2023, 163(2): 103-120.
60 LEWIS D B, BROWN J A, JIMENEZ K L. Effects of ?ooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes [J]. Estuarine, Coastal and Shelf Science, 2014, 139: 11-19.
61 MUELLER P, MOZDZER T J, LANGLEY J A, et al. Plant species determine tidal wetland methane response to sea level rise [J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-020-18763-4 .
62 TONG Chuan, HUANG Jiafang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary[J]. Acta Geographica Sinica, 2012, 67(9): 1 165-1 180.
62 仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9): 1 165-1 180.
63 CHAMBERS L G, DAVIS S E, TROXLER T, et al. Biogeochemical effects of simulated sea level rise on carbon loss in an everglades mangrove peat soil[J]. Hydrobiologia, 2014, 726(1): 195-211.
64 CRAFT C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes [J]. Limnology and Oceanography, 2007, 52(3): 1 220-1 230.
65 WI?SKI K, GUO H Y, CRAFT C B, et al. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast[J]. Estuaries and Coasts, 2010, 33(1): 161-169.
66 WEBSTER J R, BENFIELD E F. Vascular plant breakdown in freshwater ecosystems [J]. Annual Review of Ecology and Systematics, 1986, 17(1): 567-594.
67 HAN Zhixian, TONG Chuan, LIU Baigui, et al. Effects of simulated sea level rise and nitrogen enrichment on net ecosystem exchange of CO2 of Cyperus malaccensis marsh in the Min River Estuary[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2 421-2 429.
67 韩智献, 仝川, 刘白贵, 等. 模拟海平面上升和氮负荷增加对河口感潮沼泽湿地CO2垂直交换的影响[J]. 环境科学学报, 2021, 41(6): 2 421-2 429.
文章导航

/