新学科?新技术?新发现

避免异参同效的抽水井表皮层溶质运移方程推导

  • 蒯沐钦 ,
  • 黄璟胜 ,
  • 童晨晨 ,
  • 王晨 ,
  • 肖烨熙
展开
  • 河海大学 水文水资源学院,江苏 南京 210098
蒯沐钦,硕士研究生,主要从事地下水机理研究与数值模拟. E-mail:921106930@qq.com
黄璟胜,教授,主要从事地下水机理研究与数值模拟. E-mail:cshuang0318@hhu.edu.cn

收稿日期: 2023-11-07

  修回日期: 2024-02-07

  网络出版日期: 2024-04-01

基金资助

国家自然科学基金(52379062)

Derivation of Solute Transport Equation for the Skin of an Extraction Well without Equifinality

  • Muqin KUAI ,
  • Ching-Sheng HUANG ,
  • Chenchen TONG ,
  • Chen WANG ,
  • Yexi XIAO
Expand
  • College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
KUAI Muqin, Master student, research areas include groundwater mechanism and numerical simulation. E-mail: 921106930@qq.com
HUANG Ching-Sheng, Professor, research areas include groundwater mechanism and numerical simulation. E-mail: cshuang0318@hhu.edu.cn

Received date: 2023-11-07

  Revised date: 2024-02-07

  Online published: 2024-04-01

Supported by

the National Natural Science Foundation Program of China(52379062)

摘要

抽水井表皮层溶质运移控制方程受到异参同效的影响,存在参数估计的多解性问题。提出一个新的抽水井表皮层溶质运移方程(新瞬态Robin边界条件),并以径向收敛示踪试验为例构建其溶质运移模型。当抽水井为完整井时,通过拉普拉斯变换和有限傅立叶余弦变换得到模型的解析解;当抽水井为非完整井时,应用有限元法构建数值解。结果表明,表皮层溶质运移控制方程导致所估计的表皮层宽度(w)和形成层垂向弥散度(αz)是在0.5 m≤w≤1.0 m和0.08 m≤αz≤0.10 m范围内的任意组合,偏离实际值。反之,当表皮层佩克莱数(w和表皮层径向弥散度的比值)小于1时,新瞬态Robin边界条件能够准确反映表皮层的影响,消除wαz的多解性。参数估计值(w=0.31 m、αz=0.17 m)唯一,接近实际值。新模型已成功用于野外试验。

本文引用格式

蒯沐钦 , 黄璟胜 , 童晨晨 , 王晨 , 肖烨熙 . 避免异参同效的抽水井表皮层溶质运移方程推导[J]. 地球科学进展, 2024 , 39(3) : 292 -303 . DOI: 10.11867/j.issn.1001-8166.2024.0017

Abstract

The governing equation of solute transport in the well skin produces multiple parameter estimates because of the equifinality of modeling radially convergent tracer tests. A new transport equation for the skin of an extraction well (i.e., a new transient Robin boundary condition) is proposed. A new analytical model was developed to test a fully penetrating extraction well. The analytical solution of the model was obtained using the Laplace transform and finite Fourier cosine transform. A finite element solution was acquired for the test in a partially penetrating extraction well. Results suggest the skin governing equation produces the estimates of the skin width w and formation vertical dispersivity αz are arbitrary values chosen from the ranges of 0.5 m≤w≤1 m and 0.08 m≤αz ≤0.1 m. These ranges exclude the default values. In contrast, the new Robin boundary condition accurately reflects the skin effect when the Peclet number, defined as the ratio of w to the longitudinal dispersivity of the skin, is less than 1. The present solution relying on this boundary condition predicts the single optimal estimates of w and αz . The estimates (w=0.31 m, αz =0.17 m) approach their default values. The present solution applies to field tests.

参考文献

1 HUANG Wanbin, YAN Chunhua, ZHANG Xiaonan, et al. The impact of urbanization on groundwater quantity,quality,hydrothermal changes and its countermeasures[J]. Advances in Earth Science, 2020, 35(5): 497-512.
1 黄婉彬,鄢春华,张晓楠,等. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.]
2 QIN Ronggao, QIU Renmin, LI Ming, et al. Review of study on groundwater contamination risk assessment in vadose zone-aquifer[J]. Advances in Earth Science, 2020, 35(2): 111-123.
2 覃荣高,邱仁敏,黎明,等. 包气带—含水层地下水污染风险评估研究进展[J]. 地球科学进展, 2020, 35(2): 111-123.]
3 TANG Guopin, NIU Yuzhen. Study on the evolution trend of urban groundwater pollution in China[J]. Sichuan Water Resources, 2021, 42(1): 80-83.
3 唐国品,牛玉珍. 中国城市地下水污染演变趋势研究[J]. 四川水利, 2021, 42(1): 80-83.]
4 XIA Bing, GAO Hongyuan, XU Liangcai,et al. Research on groundwater pollution prevention and control technology in metal mining area[J]. China Metal Bulletin, 2022(10): 192-194.
4 夏冰,高红远,徐良才,等. 金属矿区地下水污染防治技术研究[J]. 中国金属通报, 2022(10): 192-194.]
5 MA Baoqiang, WANG Xiao, TANG Chao,et al. Overview of the characteristics of global groundwater resources development,utilization and the main environmental problems[J]. Natural Resources Information, 2022(8): 1-6.
5 马宝强,王潇,汤超,等. 全球地下水资源开发利用特点及主要环境问题概述[J]. 自然资源情报, 2022(8): 1-6.]
6 LU Hongjian, WANG Zhuoran. Research progress in groundwater simulation methods and application softwares[J]. Ground Water, 2022, 44(6): 49-52.
6 卢洪健,王卓然. 地下水模拟方法与应用软件研究进展[J]. 地下水, 2022, 44(6): 49-52.]
7 DENG H, ZHOU S F, HE Y, et al. Efficient calibration of groundwater contaminant transport models using Bayesian optimization[J]. Toxics, 2023, 11(5). DOI:10.3390/toxics11050438 .
8 SUN N Z, YANG S L, YEH W W G. A proposed stepwise regression method for model structure identification[J]. Water Resources Research, 1998, 34(10): 2 561-2 572.
9 MOENCH A F. Convergent radial dispersion: a Laplace transform solution for aquifer tracer testing[J]. Water Resources Research, 1989, 25(3): 439-447.
10 CHEN Xiangbiao. Application of groundwater tracer connectivity test on hydrogeological investigation[J]. Water Conservancy Science and Technology and Economy, 2014, 20(7): 93-95.
10 陈相彪. 地下水示踪连通试验在水文地质勘察中的应用[J]. 水利科技与经济, 2014, 20(7): 93-95.]
11 PANG Mingxin, XIE Fuxing, YUAN Shuai, et al. Failure law of shaft lining in thick topsoil and fiber monitoring analysis[J]. Safety in Coal Mines, 2022, 53(5): 211-217.
11 庞明鑫,谢福星,袁帅,等. 厚表土立井井壁变形破坏规律及光纤监测分析[J]. 煤矿安全, 2022, 53(5): 211-217.]
12 WEN Z, ZHAN H B, HUANG G H, et al. Constant-head test in a leaky aquifer with a finite-thickness skin[J]. Journal of Hydrology, 2011, 399(3/4): 326-334.
13 HUANG C S, TONG C C, HU W S, et al. Analysis of radially convergent tracer test in a two-zone confined aquifer with vertical dispersion effect: asymmetrical and symmetrical transports[J]. Journal of Hazardous Materials, 2019, 377: 8-16.
14 ZHANG Kaixin, HUANG Chingsheng, WANG Chen, et al. A new analytical method for modeling radially divergent solute transport in two-zone confined aquifers with negative skin effects[J]. Advances in Earth Science, 2023, 38(4): 429-440.
14 张开鑫,黄璟胜,王晨,等. 基于负表皮层影响的径向溶质运移模型构建与新求解方法[J]. 地球科学进展, 2023, 38(4): 429-440.]
15 WANG C, HUANG C S, TONG C C, et al. Parameter correlation study on two new analytical solutions for radially divergent tracer tests in two-zone confined aquifers with vertical dispersion effect[J]. Advances in Water Resources, 2023, 179. DOI:10.1016/j.advwatres.2023.104506 .
16 LI Xu. Thoretical investigation and numerical simulation of solute transport in heterogeneous porous media near a pumping or injection well[D]. Wuhan: China University of Geosciences(Wuhan),2020.
16 李旭. 抽/注水井附近非均质介质中溶质运移机理及数值模拟研究[D]. 武汉:中国地质大学(武汉),2020.]
17 CHEN J S. Analytical model for fully three-dimensional radial dispersion in a finite-thickness aquifer[J]. Hydrological Processes, 2010, 24(7): 934-945.
18 CHEN J S, LIANG C P, GAU H S, et al. Mathematical model for formation decontamination by pumping with well bore mixing[J]. Applied Mathematical Modelling, 2006, 30(5): 446-457.
19 CHEN J S, LIU C W, LIAO C M. A novel analytical power series solution for solute transport in a radially convergent flow field[J]. Journal of Hydrology, 2002, 266(1/2): 120-138.
20 BARUA G, BORA S N. Hydraulics of a partially penetrating well with skin zone in a confined aquifer[J]. Advances in Water Resources,2010,33(12):1 575-1 587.
21 LI Haixue, CHENG Xuxue, HAN Shuangbao, et al. Application of stratified pumping test in hydrogeological exploration of larger thickness aquifers[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(5): 174-181.
21 李海学,程旭学,韩双宝,等. 分层抽水在大厚度含水层水文地质勘查中的应用[J]. 南水北调与水利科技, 2020, 18(5): 174-181.]
22 张绚华. 一种新型井下放射性示踪剂释放方法及其装置:CN102392633B[P]. 2014-07-16.
23 CHEN J S, LIU C W, CHEN C S, et al. A Laplace transform solution for tracer tests in a radially convergent flow field with upstream dispersion[J]. Journal of Hydrology, 1996, 183(3/4): 263-275.
24 WANG Yulin, XIE Kanghe, HUANG Dazhong, et al. A mathematical model and its semi-analytical solution for the flow of anisotropic confined aquifer with two radial layers considering heterogeneity of well skin[J]. Chinese Journal of Engineering Mathematics, 2016, 33(3): 221-233.
24 王玉林,谢康和,黄大中,等. 非均质表皮层径向双层承压井流数学模型的半解析解[J]. 工程数学学报, 2016, 33(3): 221-233.]
25 HUANG C S, YANG S Y, YEH H D. Technical Note: approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer[J]. Hydrology and Earth System Sciences, 2015, 19(6): 2 639-2 647.
26 STEHFEST H. Algorithm 368:numerical inversion of Laplace transforms[D5][J]. Communications of the ACM, 1970, 13(1): 47-49.
27 WOLFRAM R. Mathematica[Z]. Version 11.0. Champaign,Illinois: Wolfram Research, Inc., 2016.
28 MCELWEE C D, BUTLER J J, BOHLING G C,et al. Sensitivity analysis of slug tests Part 2. observation wells[J]. Journal of Hydrology, 1995, 164(1/2/3/4): 69-87.
29 WANG Yulin, XIE Kanghe, LI Chuanxun. Mathematical model and analytical solution for flow in confined aquifer due to groundwater permeating through bottom of pumping well in overlying aquiclude[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(2): 439-444.
29 王玉林,谢康和,李传勋. 未穿透覆盖层的自流井渗流模型与解析解[J]. 地下空间与工程学报, 2020, 16(2): 439-444.]
文章导航

/