收稿日期: 2023-09-04
修回日期: 2023-11-03
网络出版日期: 2023-11-20
基金资助
国家自然科学基金项目(42302167);陕西省自然科学基础研究计划项目(2023-JC-QN-0355)
Comprehensive Evaluation of Geo-Stress in Tight Oil Sandstone Under Constraints of Dynamic-Static Geomechanical Methods
Received date: 2023-09-04
Revised date: 2023-11-03
Online published: 2023-11-20
Supported by
the National Natural Science Foundation of China(42302167);Shaanxi Province Natural Science Basic Research Program(2023-JC-QN-0355)
地应力是地下岩石重要的地质力学属性,对其大小及方向的准确评估对于致密油储层增产方案设计具有重要意义。以致密油砂岩储层为例,系统开展了岩石力学、差应变、水力压裂及微地震监测约束下的地应力大小和方向的综合评价。结果表明,三方向主应力均为埋深的函数。压裂为张性破裂且受水平最小主应力的直接影响,因此,破裂压力与水平最小主应力之间有良好的正相关性;破裂压力与水平最大主应力之间无直接联系,主要受岩石强度影响,能反映泊松比性质,因此,具有高破裂压力岩石的水平最大主应力可能相对偏低。基于井壁崩落法、钻井诱导缝法、震源机制分析及微地震监测确定了目的层现今地应力方向为NE45°~NE60°。天然裂缝的存在会导致局部人工缝扩展方向发生偏转,压裂缝的扩展主要受天然缝的分布及开启性影响;进而,水力缝缝高与半缝长呈负相关性,即天然裂缝开启性对控制水力缝缝高有一定影响。成果可以为强非均质性致密油储层压裂效果评估提供科学指导。
尹帅 , 刘翰林 , 何建华 , 王瑞飞 , 李香雪 , 黄郑 , 周永强 , 贺子潇 . 动静态地质力学方法约束的致密油砂岩地应力综合评估[J]. 地球科学进展, 2023 , 38(12) : 1285 -1296 . DOI: 10.11867/j.issn.1001-8166.2023.077
Geostress is an important geomechanical property of underground rock, and an accurate evaluation of its magnitude and direction is important for the stimulation scheme design of tight oil reservoirs. In this study, taking a tight oil sandstone reservoir as an example, a comprehensive evaluation of the magnitude and direction of geostress under the constraints of rock mechanics, differential strain, hydraulic fracturing, and microseismic monitoring was systematically performed. The results showed that the three principal stresses are functions of the burial depth. Fracturing is a tensile fracture that is directly affected by the horizontal minimum principal stress; thus, a good positive correlation exists between the fracture pressure and the horizontal minimum principal stress. No direct relationship exists between the rupture pressure and the maximum horizontal principal stress, which is primarily affected by the rock strength and reflects Poisson’s ratio. Therefore, the maximum horizontal principal stress of rocks with high rupture pressures may be relatively low. Based on the well-wall caving method, drilling-induced fracture method, focal mechanism analysis, and microseismic monitoring; the present crustal stress direction of the target layer was determined to range NE45°~NE60°. The existence of natural fractures leads to a deflection in the expansion direction of local artificial fractures, and the expansion of pressure fractures is primarily affected by the distribution and opening of natural fractures. Furthermore, the hydraulic fracture height and half-fracture length showed a negative correlation, and the natural fracture opening influenced the hydraulic fracture height. This study provides scientific guidance for evaluating fracturing effects in highly heterogeneous tight oil reservoirs.
1 | WANG Fei, ZHOU Tong, XU Jiaxin, et al. Fracturing pump-stopping pressure drop model considering proppant migration[J]. 石油学报, 2023, 44(4): 647-655. |
1 | 王飞, 周彤, 许佳鑫,等. 考虑支撑剂运移的压裂停泵压降模型[J]. Acta Petrolei Sinic, 2023, 44(4): 647-655. |
2 | DU Shuheng, SHEN Wenhao, ZHAO Yabo. Quantitave evaluation of stress sensitivity in shale reservoirs: ideas and applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2 235-2 244. |
2 | 杜书恒, 沈文豪, 赵亚溥. 页岩储层应力敏感性定量评价: 思路及应用[J].力学学报,2022,54(8): 2 235-2 244. |
3 | WEI Yunsheng, LIN Tiejun, YU Hao, et al. Propagation law of fracture network in shale reservoirs based on the embeded cohesive unit method[J]. Natural Gas Industry, 2022, 42(10): 74-83. |
3 | 位云生,林铁军,于浩,等. 基于嵌入黏聚单元法的页岩储层压裂缝网扩展规律[J].天然气工业,2022,42(10):74-83. |
4 | DENG Hucheng, ZHOU Wen, JIANG Haogang, et al. Current terrestrial stress direction of the Shaximiao Formation in the Yanjinggou Structure of the West Sichuan Depression[J]. Oil and Gas Geology, 2009, 30(6): 720-725. |
4 | 邓虎成, 周文, 姜浩罡, 等. 川西坳陷盐井沟构造沙溪庙组现今地应力方向[J]. 石油与天然气地质, 2009, 30(6): 720-725. |
5 | DONG Yanlei, ZHU Xiaomin, GENG Xiaojie,et al.Sedimentary characteristics comparison and controlling factors analyses of near-shore subaqueous fan and fan delta in the Hetaoyuan formation of southeastern Biyang Sag[J]. Oil & Gas Geology,2015, 36(2): 271-279. |
5 | 董艳蕾,朱筱敏,耿晓洁,等.泌阳凹陷东南部核桃园组近岸水下扇与扇三角洲沉积特征比较及控制因素分析[J].石油与天然气地质,2015, 36(2): 271-279. |
6 | QIU Ronghua, FU Daiguo, WAN Li. A case study of hydrocarbon exploration in the southern steep slope zone of Biyang Depression[J]. Oil & Gas Geology, 2007, 28(5): 605-609. |
6 | 邱荣华,付代国,万力.泌阳凹陷南部陡坡带油气勘探实例分析[J]. 石油与天然气地质,2007, 28(5): 605-609. |
7 | ZOU Yushi, SHI Shanzhi, ZHANG Shicheng, et al. Hydraulic fracture geometry and proppant distribution in thin interbeded shale oil reservoirs[J]. Petroleum Exploration and Development, 2022, 49(5): 1 025-1 032. |
7 | 邹雨时,石善志,张士诚,等.薄互层型页岩油储集层水力裂缝形态与支撑剂分布特征[J].石油勘探与开发,2022, 49(5): 1 025-1 032. |
8 | ZOU Yushi, SHI Shanzhi, ZHANG Shicheng, et al. Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: a case study of tight conglomerate of Mahu Sag in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1 202-1 209. |
8 | 邹雨时,石善志,张士诚,等.致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J].石油勘探与开发,2021, 48(6): 1 202-1 209. |
9 | LI Hong, YU Haiyang, YANG Haifeng, et al. Adaptive stress sensitivity study of fractured heterogeneous tight reservoir [J]. Petroleum Drilling Techniques, 2022, 50(3): 99-105. |
9 | 李虹, 于海洋, 杨海烽,等. 裂缝性非均质致密储层自适应应力敏感性研究[J].石油钻探技术,2022,50(3): 99-104. |
10 | LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Natural fractures and rock mechanical stratigraphy evaluation in the Huaqing area, Ordos Basin: a quantitative analysis based on numerical simulation[J]. Earth Science, 2023, 48(7): 1-19. |
10 | 刘敬寿,丁文龙,杨海盟,等.鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化——基于数值模拟的定量分析[J]. 地球科学, 2023, 48(7): 1-19. |
11 | DING Wenlong, WANG Xinghua, HU Qiujia,et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750. |
11 | 丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015, 30(7): 737-750. |
12 | XIAO Guangrui, LI Rao, ZHANG Yuru, et al. Application of diffraction wave imaging for fractured reservoir prediction of buried hill—a case study of BZ-A Oilfield[J]. Geophysical Prospecting Petroleum, 2022, 61(5): 812-819. |
12 | 肖广锐, 李尧, 张羽茹,等. 裂缝性页岩储层水力压裂多簇裂——以渤中A气田为例[J].石油物探,2022, 61(5): 812-819. |
13 | YONG Shihe, ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying: China University of Petroleum Press, 2007: 34-36. |
13 | 雍世和,张超谟.测井数据处理与综合解释[M]. 东营:中国石油大学出版社, 2007: 34-36. |
14 | WANG Ke, DAI Junsheng, ZHANG Hongguo, et al. Numerical simulation of fractured reservoir stress sensitivity: a case from Kuqa depression Keshen gas field[J]. Acta Petrolei Sinica, 2014, 35(1): 123-133. |
14 | 王珂, 戴俊生, 张宏国, 等. 裂缝性储层应力敏感性数值模拟——以库车坳陷克深气田为例[J]. 石油学报, 2014, 35(1): 123-133. |
15 | TERZAGHI K. Erdbaumechanik auf bodenphysikalischer Grundlage. Franz Deuticke, Leipzig [M]. Germany, Leipzing: Deuticke, 1925: 399-400. |
16 | TANG Xiaoming, QIAN Yuping, CHEN Xuelian.Laboratory study of elastic wave theory for a cracked orous medium using ultrasonic velocity data of rock samples[J]. Chinese Journal of Geophysics, 2013, 56(12): 4 226-4 232. |
16 | 唐晓明,钱玉萍,陈雪莲. 孔隙、裂隙介质弹性波理论的实验研究[J].地球物理学报,2013, 56(12): 4 226-4 232. |
17 | LIU Zhaoyi. Study on fracture initiation and propagation law of fractured reservoir based on finite-discrete element method[D]. Daqing: Northeast Petroleum University, 2022:1-10. |
17 | 刘照义.基于有限—离散元方法的裂缝性储层压裂裂缝起裂扩展规律研究[D].大庆:东北石油大学,2022:1-10. |
18 | FAN Caiwei, JIA Ru, LIU Bo, et al. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin[J]. Lithological Reservoirs, 2023, 35(1): 36-48. |
18 | 范彩伟, 贾如, 柳波,等. 莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用[J]. 岩性油气藏, 2023, 35(1): 36-48. |
19 | HE Yu, ZHOU Xing, LI Shaoxuan, et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag, Bohai Bay Basin[J]. Lithological Reservoirs, 2022, 34(3): 60-69. |
19 | 何玉, 周星, 李少轩,等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69. |
20 | DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area,southern Sichuan Basin[J]. Lithological Reservoirs, 2022, 34(1): 43-51. |
20 | 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
21 | CAO Feng, HE Jianhua, WANG Yuanyuan, et al. Methods to evaluate present-day in-situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe Formation in Hechuan area[J]. Advances in Earth Science, 2022, 37(7): 742-755. |
21 | 曹峰,何建华,王园园,等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J].地球科学进展,2022,37(7): 742-755. |
22 | LIU Shaojun, LIU Yong, ZHAO Shengxian, et al. Distribution characteristics and pattern of deep shale present geostress field in Northern Luzhou[J]. Advances in Earth Science, 2023, 38(12). DOI:10.11867/j.issn.1001-8166.2023.070 . |
22 | 刘绍军,刘勇,赵圣贤,等. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J].地球科学进展,2023, 38(12). DOI:10.11867/j.issn.1001-8166.2023.070 . |
23 | FAN Xiangyu, GONG Ming, ZHANG Qiangui. Prediction of the horizontal stress of the tight sandstone formation in eastern Sulige of China [J]. Journal of Petroleum Science and Engineering, 2014, 113(2): 72-80. |
24 | YIN Shuai, DING Wenlong, LIN Lifei, et al. Characteristics and the controlling effect on hydrocarbon accumulation of fractures in Yanchang Formation in Zhidan-Wuqi area, western Ordos Basin[J]. Earth Science, 2023, 48(7): 2 614-2 626. |
24 | 尹帅, 丁文龙,林利飞,等. 鄂尔多斯盆地西部志丹—吴起地区延长组裂缝特征及其控藏作用[J]. 地球科学, 2023, 48(7): 2 614-2 626. |
25 | YIN Shuai, SUN Xiaoguang, WU Zhonghu, et al. Coupling control of tectonic evolution and fractures on the Upper Paleozoic gas reservoirs in the northeastern margin of the Ordos Basin[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3 724-3 737. |
25 | 尹帅, 孙晓光, 邬忠虎,等. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用[J]. 中南大学学报(自然科学版), 2022, 53(9): 3 724-3 737. |
26 | QIN Yangliang, HE Youbin, CAI Jun, et al. Tectonic evolution and formation mechanism of Davie Fracture Zone in East Africa coast[J]. Lithological Reservoirs, 2021, 33(2): 104-115. |
26 | 覃阳亮, 何幼斌, 蔡俊, 等. 东非海岸 Davie 构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2): 104-115. |
27 | CONG Ping, YAN Jianping, JING Cui, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: a case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin[J]. Lithological Reservoirs, 2021, 33(3): 177-188. |
27 | 丛平, 闫建平, 井翠, 等. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188. |
/
〈 |
|
〉 |