藻类或成为新的N2O源和汇
收稿日期: 2023-08-15
修回日期: 2023-11-19
网络出版日期: 2023-11-20
基金资助
国家自然科学基金面上项目(41876134);教育部长江学者奖励计划(T2014253);生物地质与环境地质国家重点实验室基金项目(GKZ22Y656)
Algae as a New Source or Sink of Nitrous Oxide
Received date: 2023-08-15
Revised date: 2023-11-19
Online published: 2023-11-20
Supported by
the National Natural Science Foundation of China(41876134);Changjiang Scholar Program of Chinese Ministry of Education(T2014253);JS. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences(GKZ22Y656)
氧化亚氮(N2O)是一种重要的温室气体,对臭氧层具有破坏作用。在微藻培养过程中以及富营养化湖泊等以微藻为基础的生态系统中,已经观察到N2O的排放。然而,对于藻类中N2O收支平衡的重要作用以及潜在的藻类N2O产生途径却鲜有报道。综述了近年来藻类排放和吸收N2O的相关研究,主要内容包括藻类与N2O关系研究的发展历程、N2O在藻类体内产生和消耗的几种可能途径、藻类微环境对N2O分布格局的影响及其潜在的对全球气候变化的影响。鉴于政府间气候变化专门委员会目前没有考虑藻类水华或藻类养殖期间可能产生N2O排放,呼吁在全球范围内加强藻类N2O生产相关的实验研究,为全面理清藻类在N2O排放和吸收中的重要作用,全面评估水生生态系统温室气体排放提供支撑。
孙军 , 谷挺 , 贾岱 , 付阳 . 藻类或成为新的N2O源和汇[J]. 地球科学进展, 2024 , 39(1) : 12 -22 . DOI: 10.11867/j.issn.1001-8166.2023.073
N2O is an important greenhouse gas that also damages the ozone layer. N2O emissions have been observed during microalgae cultivation and in microalgae-based ecosystems, such as eutrophic lakes. However, little has been reported on the important role of the N2O balance in algae and the potential algal N2O production pathways. A review of recent relevant studies on N2O synthesis and fixation by algae shows that the studies mainly focus on the relationship between algae and N2O emissions, several possible pathways of N2O production and consumption in algae, the influence of the algal microenvironment on the distribution pattern of N2O, and the potential impacts on global climate change. However, the Intergovernmental Panel on Climate Change currently does not consider the possible N2O emissions during algal blooms or algal aquaculture; hence, it is necessary to intensify experimental studies related to algal N2O production globally to take important steps towards a comprehensive clarification of the important roles of algae in N2O emission and fixation and a comprehensive assessment of greenhouse gas emissions from aquatic ecosystems.
1 | TIAN H Q, XU R T, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7 828): 248-256. |
2 | CRUTZEN P J, EHHALT D H. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer[J]. Ambio, 1977, 6(2/3): 112-117. |
3 | LIN Hua. Research status and prospect of marine nitrous oxide[J]. Advances in Geosciences, 2014(3): 115-121. |
3 | 林华. 海洋氧化亚氮研究现状与展望[J]. 地球科学前沿, 2014(3): 115-121. |
4 | CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles [M]// STOCKER T, QIN F D, PLATTNER G K. Change climate 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2003: 465-570. |
5 | RODOLFI L, CHINI ZITTELLI G, BASSI N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnology and Bioengineering, 2009, 102(1): 100-112. |
6 | SHILTON A N, POWELL N, GUIEYSSE B. Plant based phosphorus recovery from wastewater via algae and macrophytes[J]. Current Opinion in Biotechnology, 2012, 23(6): 884-889. |
7 | ZHAO B T, SU Y X. Process effect of microalgal-carbon dioxide fixation and biomass production: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 121-132. |
8 | WEATHERS P J. N2O evolution by green algae[J]. Applied and Environmental Microbiology, 1984, 48(6): 1 251-1 253. |
9 | WEATHERS P J, NIEDZIELSKI J J. Nitrous oxide production by cyanobacteria[J]. Archives of Microbiology, 1986, 146(2): 204-206. |
10 | GUIEYSSE B, PLOUVIEZ M, COILHAC M, et al. Nitrous oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts[J]. Biogeosciences, 2013, 10(10): 6 737-6 746. |
11 | MENGIS M, G?CHTER R, WEHRLI B. Sources and sinks of nitrous oxide (N2O) in deep lakes[J]. Biogeochemistry, 1997, 38(3): 281-301. |
12 | WANG H J, WANG W D, YIN C Q, et al. Littoral zones as the “hotspots” of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China[J]. Atmospheric Environment, 2006, 40(28): 5 522-5 527. |
13 | BANGE H, FREING A, KOCK A, et al. Marine pathways to nitrous oxide[J]. Nitrous Oxide & Climate Change, 2010. DOI:10.4324/9781849775113 . |
14 | NEVISON C D, WEISS R F, ERICKSON D J III. Global oceanic emissions of nitrous oxide[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 15 809-15 820. |
15 | COHEN Y, GORDON L I. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production[J]. Deep Sea Research, 1978, 25(6): 509-524. |
16 | PIEROTTI D, RASMUSSEN R A. Nitrous oxide measurements in the eastern tropical Pacific Ocean[J]. Tellus, 1980, 32(1): 56-72. |
17 | SMITH C J, DELAUNE R D, PATRICK W H. Nitrous oxide emission from Gulf Coast wetlands[J]. Geochimica et Cosmochimica Acta, 1983, 47(10): 1 805-1 814. |
18 | OUDOT C, ANDRIE C, MONTEL Y. Nitrous oxide production in the tropical Atlantic Ocean[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1990, 37(2): 183-202. |
19 | MORELL J M, CAPELLA J, MERCADO A, et al. Nitrous oxide fluxes in Caribbean and tropical Atlantic waters: evidence for near surface production[J]. Marine Chemistry, 2001, 74(2/3): 131-143. |
20 | MCCRACKIN M L, ELSER J J. Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition[J]. Global Biogeochemical Cycles, 2011, 25(4). DOI:10.1029/2010GB003897 . |
21 | XIAO Q T, XU X F, ZHANG M, et al. Coregulation of nitrous oxide emissions by nitrogen and temperature in China’s third largest freshwater lake (Lake Taihu)[J]. Limnology and Oceanography, 2019, 64(3): 1 070-1 086. |
22 | MIAO Y Q, HUANG J, DUAN H T, et al. Spatial and seasonal variability of nitrous oxide in a large freshwater lake in the lower reaches of the Yangtze River, China[J]. Science of the Total Environment, 2020, 721. DOI:10.1016/j.scitotenv.2020.137716 . |
23 | FERRóN S, HO D T, JOHNSON Z I, et al. Air-water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond[J]. Environmental Science & Technology, 2012, 46(19): 10 842-10 848. |
24 | ALCáNTARA C, MU?OZ R, NORVILL Z, et al. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater[J]. Bioresource Technology, 2015, 177: 110-117. |
25 | MEZZARI M P, SILVA M L B, NICOLOSO R S, et al. Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate[J]. Bioresource Technology, 2013, 149: 327-332. |
26 | HARTER T, BOSSIER P, VERRETH J, et al. Carbon and nitrogen mass balance during flue gas treatment with Dunaliella salina cultures[J]. Journal of Applied Phycology, 2013, 25(2): 359-368. |
27 | The American Society of Limnology and Oceanography, Inc. Nitrous oxide production by estuarine epiphyton[J]. Limnology and Oceanography, 1993, 38(2): 435-441. |
28 | NI W, ZHU Z. Gaseous nitrogen losses and nitrous oxide emission from a flooded paddy soil as affected by illumination and copper addition[J]. Biology and Fertility of Soils, 2001, 34(6): 460-462. |
29 | KWON Y S, RHEE T S, KIM S Y, et al. Fragilariopsis kerguelensis response to iron enrichment regarding its growth, uptake of nutrients and trace metals, and changes in CO2, CH4, and N2O[J]. Ocean Science Journal, 2014, 49(4): 449-463. |
30 | PLOUVIEZ M, SHILTON A, PACKER M A, et al. N2O emissions during microalgae outdoor cultivation in 50L column photobioreactors[J]. Algal Research, 2017, 26: 348-353. |
31 | BURLACOT A, RICHAUD P, GOSSET A, et al. Algal photosynthesis converts nitric oxide into nitrous oxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2 704-2 709. |
32 | BAUER S K, GROTZ L S, CONNELLY E B, et al. Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide[J]. Bioresource Technology, 2016, 218: 196-201. |
33 | PLOUVIEZ M, WHEELER D, SHILTON A, et al. The biosynthesis of nitrous oxide in the green Alga Chlamydomonas reinhardtii [J]. The Plant Journal, 2017, 91(1): 45-56. |
34 | McLEOD A R, BRAND T, CAMPBELL C N, et al. Ultraviolet radiation drives emission of climate-relevant gases from marine phytoplankton[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(9). DOI:10.1029/2021JG006345 . |
35 | STIEF P, KAMP A, THAMDRUP B, et al. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels[J]. Frontiers in Microbiology, 2016, 7. DOI:10.3389/fmieb.2016.00098 . |
36 | KAMP A, STIEF P, KNAPPE J, et al. Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia[J]. PLoS ONE, 2013, 8(12). DOI:10.1371/journal.pone.0082605 . |
37 | FABISIK F, GUIEYSSE B, PROCTER J, et al. Nitrous oxide (N2O) synthesis by the freshwater Cyanobacterium Microcystis aeruginosa [J]. Biogeosciences, 2023, 20(3): 687-693. |
38 | BéCHET Q, PLOUVIEZ M, CHAMBONNIèRE P, et al. Environmental impacts of full-scale algae cultivation[M]// Microalgae-based biofuels and bioproducts. Amsterdam: Elsevier, 2017: 505-525. |
39 | FAGERSTONE K D, QUINN J C, BRADLEY T H, et al. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation[J]. Environmental Science & Technology, 2011, 45(21): 9 449-9 456. |
40 | HAYATSU M, TAGO K, SAITO M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification[J]. Soil Science and Plant Nutrition, 2008, 54(1): 33-45. |
41 | WANG C X, ZHU G B, WANG Y, et al. Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake[J]. Journal of Environmental Sciences (China), 2013, 25(1): 44-52. |
42 | CROFT M T, LAWRENCE A D, RAUX-DEERY E, et al. Algae acquire vitamin B12 through a symbiotic relationship with bacteria[J]. Nature, 2005, 438(7 064): 90-93. |
43 | RIDLEY C J A, DAY J G, SMITH A G. Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green Alga Lobomonas rostrata and the bacterium Mesorhizobium loti [J]. Journal of Applied Phycology, 2018, 30(2): 995-1 003. |
44 | PLOUVIEZ M, SHILTON A, PACKER M A, et al. Nitrous oxide emissions from microalgae: potential pathways and significance[J]. Journal of Applied Phycology, 2019, 31(1): 1-8. |
45 | TISCHNER R, PLANCHET E, KAISER W M. Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana [J]. FEBS Letters, 2004, 576(1/2): 151-155. |
46 | GUPTA K J, IGAMBERDIEV A U. The anoxic plant mitochondrion as a nitrite: no reductase[J]. Mitochondrion, 2011, 11(4): 537-543. |
47 | FOLGOSA F, MARTINS M C, TEIXEIRA M. Diversity and complexity of flavodiiron NO/O2 reductases[J]. FEMS Microbiology Letters, 2018, 365(3). DOI:10.1093/femsle/fnx267 . |
48 | HIGGINS S A, WELSH A, ORELLANA L H, et al. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils[J]. Applied and Environmental Microbiology, 2016, 82(10): 2 919-2 928. |
49 | HAHN J, JUNGE C. Atmospheric nitrous oxide: a critical review[J]. Zeitschrift Für Naturforschung A, 1977, 32(2): 190-214. |
50 | MIRANDA K M, KATORI T, TORRE C L, et al. Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo[J]. Journal of Medicinal Chemistry, 2005, 48: 8 220-8 228. |
51 | GUPTA K J, FERNIE A R, KAISER W M, et al. On the origins of nitric oxide[J]. Trends in Plant Science, 2011, 16(3): 160-168. |
52 | SAKIHAMA Y, NAKAMURA S, YAMASAKI H. Nitric oxide production mediated by nitrate reductase in the green Alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms[J]. Plant and Cell Physiology, 2002, 43(3): 290-297. |
53 | JAHANGIR M M R, FENTON O, MüLLER C, et al. In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland[J]. Water Research, 2017, 111: 254-264. |
54 | SALK K R, ERLER D V, EYRE B D, et al. Unexpectedly high degree of anammox and DNRA in seagrass sediments: description and application of a revised isotope pairing technique[J]. Geochimica et Cosmochimica Acta, 2017, 211: 64-78. |
55 | AALTO S L, ASMALA E, JILBERT T, et al. Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 2021, 255. DOI:10.1016/j.ecss.2021.107369 . |
56 | KAMP A, BEER D D, NITSCH J L, et al. Diatoms respire nitrate to survive dark and anoxic conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5 649-5 654. |
57 | ARMBRUST E V. The life of diatoms in the world’s oceans[J]. Nature, 2009, 459(7 244): 185-192. |
58 | PI?A-OCHOA E, H?GSLUND S, GESLIN E, et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 1 148-1 153. |
59 | RISGAARD-PETERSEN N, LANGEZAAL A M, INGVARDSEN S, et al. Evidence for complete denitrification in a benthic foraminifer[J]. Nature, 2006, 443(7 107): 93-96. |
60 | ZHOU Z M, TAKAYA N, NAKAMURA A, et al. Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi[J]. Journal of Biological Chemistry, 2002, 277(3): 1 892-1 896. |
61 | KIM S W, FUSHINOBU S, ZHOU S M, et al. Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion?[J]. Applied and Environmental Microbiology, 2009, 75(9): 2 652-2 658. |
62 | DAIBER A, SHOUN H, ULLRICH V. Nitric oxide reductase (P450nor) from Fusarium oxysporum [J]. Journal of Inorganic Biochemistry, 2005, 99(1): 185-193. |
63 | TAKASAKI K, SHOUN H, YAMAGUCHI M, et al. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol role of acetyl coa synthetase in anaerobic atp synthesis[J]. Journal of Biological Chemistry, 2004, 279(13): 12 414-12 420. |
64 | BOWLER C, ALLEN A E, BADGER J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7 219): 239-244. |
65 | ARMBRUST E V, BERGES J A, BOWLER C, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism[J]. Science, 2004, 306(5 693): 79-86. |
66 | BOWLER C, VARDI A, ALLEN A E. Oceanographic and biogeochemical insights from diatom genomes[J]. Annual Review of Marine Science, 2010, 2: 333-365. |
67 | SANDERS R, HENSON S. Ecological carbon sequestration in the oceans and climate change[M]// Global environmental change. Dordrecht: Springer, 2014: 125-131. |
68 | CICERONE R J. Analysis of sources and sinks of atmospheric nitrous oxide (N2O)[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18 265-18 271. |
69 | CODISPOTI L A, CHRISTENSEN J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean[J]. Marine Chemistry, 1985, 16(4): 277-300. |
70 | FARíAS L, FAúNDEZ J, FERNáNDEZ C, et al. Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures[J]. PLoS ONE, 2013, 8(5). DOI:10.1371/journal.pone.0063956 . |
71 | MOZEN M M, BURRIS R H. The incorporation of 15N-labelled nitrous oxide by nitrogen fixing agents[J]. Biochimica et Biophysica Acta, 1954, 14: 577-578. |
72 | BURGESS B K, LOWE D J. Mechanism of molybdenum nitrogenase[J]. Chemical Reviews, 1996, 96(7): 2 983-3 012. |
73 | HOCH G E, SCHNEIDER K C, BURRIS R H. Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules[J]. Biochimica et Biophysica Acta, 1960, 37(2): 273-279. |
74 | SHESTAKOV A F, SHILOV A E. On the coupled oxidation-reduction mechanism of molecular nitrogen fixation[J]. Russian Chemical Bulletin, 2001, 50(11): 2 054-2 059. |
75 | PLOUG H, BERGKVIST J. Oxygen diffusion limitation and ammonium production within sinking diatom aggregates under hypoxic and anoxic conditions[J]. Marine Chemistry, 2015, 176: 142-149. |
76 | HIETANEN S, MOISANDER P H, KUPARINEN J, et al. No sign of denitrification in a Baltic Sea cyanobacterial bloom[J]. Marine Ecology Progress Series, 2002, 242: 73-82. |
77 | TUOMAINEN J M, HIETANEN S, KUPARINEN J, et al. Baltic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has negligible denitrification activity[J]. FEMS Microbiology Ecology, 2003, 45(2): 83-96. |
78 | KLAWONN I, BONAGLIA S, BRüCHERT V, et al. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates[J]. The ISME Journal, 2015, 9(6): 1 456-1 466. |
79 | ULLOA O, CANFIELD D E, DELONG E F, et al. Microbial oceanography of anoxic oxygen minimum zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 15 996-16 003. |
80 | BIANCHI D, WEBER T S, KIKO R, et al. Global niche of marine anaerobic metabolisms expanded by particle microenvironments[J]. Nature Geoscience, 2018, 11(4): 263-268. |
/
〈 |
|
〉 |