华北降水日循环与陆气耦合和气溶胶联系的研究进展
收稿日期: 2023-05-16
修回日期: 2023-06-15
网络出版日期: 2023-09-25
基金资助
国家自然科学基金项目(41975084)
Research advances in the Diurnal Cycle of Precipitation in North China and its Relationship with Land-Atmosphere Coupling and Aerosols
Received date: 2023-05-16
Revised date: 2023-06-15
Online published: 2023-09-25
Supported by
the National Natural Science Foundation of China(41975084)
降水日循环是气候系统中多种动力和热力过程共同作用的结果,与水循环和陆气相互作用密切相关。在华北地区,降水日循环受到山谷风环流、边界层惯性振荡和海陆风环流等影响,主要表现为凌晨和下午两个峰值。同时,人为排放导致的较高的气溶胶浓度也对降水日循环有一定影响。介绍了华北降水日循环的基本特征和影响因素,并总结了近期在华北降水日循环与陆气耦合的联系、华北降水日循环的模式模拟及气溶胶的影响等方面的研究,归纳了已有的科学认知,总结了现有研究的不足和面临的挑战。总之,深入研究降水日循环及其影响因素,可以帮助我们更好地理解降水的形成机制和演变规律,为提高降水精细化预报能力提供科学支撑。
魏江峰 , 宋媛媛 , 逯博延 . 华北降水日循环与陆气耦合和气溶胶联系的研究进展[J]. 地球科学进展, 2023 , 38(9) : 881 -889 . DOI: 10.11867/j.issn.1001-8166.2023.055
The Diurnal Cycle of Precipitation (DCP) is the result of various dynamic and thermodynamic processes in the climate system and is closely related to the water cycle and land-atmosphere interactions. In North China, the DCP is influenced by factors such as valley wind circulation, boundary layer inertial oscillations, and sea-land breeze circulation, exhibiting two peaks during the early morning and afternoon. In addition, the DCP in North China is influenced by anthropogenic aerosol emissions. This study introduces the fundamental characteristics and factors influencing the DCP in North China and summarizes recent research on the connection between the DCP and land-atmosphere coupling in North China, the modeling of the DCP, and the influence of aerosols on the DCP. The existing scientific knowledge is synthesized, and its shortcomings and challenges are outlined. Overall, investigating the DCP and its influencing factors can help us better understand the mechanisms of precipitation formation and evolution. This provides scientific support for enhancing the accuracy of fine-scale precipitation forecasting.
1 | DAI A G, TRENBERTH K E, KARL T R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range[J]. Journal of Climate, 1999, 12(8): 2 451-2 473. |
2 | MOONEY P A, MULLIGAN F J, BRODERICK C. Diurnal cycle of precipitation over the British Isles in a 0.44° WRF multiphysics regional climate ensemble over the period 1990-1995[J]. Climate Dynamics, 2016, 47(9): 3 281-3 300. |
3 | DAI A G. Global precipitation and thunderstorm frequencies. part II: diurnal variations[J]. Journal of Climate, 2001, 14(6): 1 112-1 128. |
4 | YANG G Y, SLINGO J. The diurnal cycle in the tropics[J]. Monthly Weather Review, 2001, 129(4): 784-801. |
5 | SOROOSHIAN S, GAO X, HSU K, et al. Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information[J]. Journal of Climate, 2002, 15(9): 983-1 001. |
6 | YU R C, LI J, CHEN H M, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Journal of Meteorological Research, 2014, 28(5): 877-902. |
7 | DIRMEYER P A, PETERS-LIDARD C, BALSAMO G. Land-atmosphere interactions and the water cycle[M]// BRUNET G, JONES S, RUTI P M. Seamless prediction of the Earth system: from minutes to months. Geneva, Switzerland: WMO-1156, World Meteorological Organization, 2015: 145-154. |
8 | SHIN D W, COCKE S, LAROW T E. Diurnal cycle of precipitation in a climate model[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D13). DOI:10.1029/2006JD008333 . |
9 | YIN S Q, GAO G, LI W J, et al. Long-term precipitation change by hourly data in Haihe River Basin during 1961-2004[J]. Science China Earth Sciences, 2011, 54(10): 1 576-1 585. |
10 | CARBONE R E, TUTTLE J D, AHIJEVYCH D A, et al. Inferences of predictability associated with warm season precipitation episodes[J]. Journal of the Atmospheric Sciences, 2002, 59(13): 2 033-2 056. |
11 | DIRMEYER P A, CASH B A, KINTER III J L, et al. Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization[J]. Climate Dynamics, 2012, 39(1): 399-418. |
12 | HUANG W R, CHAN J C L, AU-YEUNG A Y M. Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China[J]. Climate Dynamics, 2013, 40(7): 1 625-1 642. |
13 | KIM H, LEE M I, CHA D H, et al. Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10km horizontal resolution[J]. Climate Dynamics, 2019, 53(11): 6 523-6 542. |
14 | HAO Lisheng, XIANG Liang, ZHOU Xuwen. The quasi-biweekly oscillation of daily precipitation and low-frequency circulation characteristics over North China Plain in summer[J]. Plateau Meteorology, 2015, 34(2): 486-493. |
14 | 郝立生, 向亮, 周须文. 华北平原夏季降水准双周振荡与低频环流演变特征[J]. 高原气象, 2015, 34(2): 486-493. |
15 | ZHOU T J, YU R C, CHEN H M, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: a comparison of satellite data with rain gauge observations[J]. Journal of Climate, 2008, 21(16): 3 997-4 010. |
16 | KOSTER R D, DIRMEYER P A, GUO Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305(5 687): 1 138-1 140. |
17 | LI C C, MAO J T, LAU K H A, et al. Characteristics of distribution and seasonal variation of aerosol optical depth in Eastern China with MODIS products[J]. Chinese Science Bulletin, 2003, 48(22): 2 488-2 495. |
18 | SHEEHAN P, CHENG E J, ENGLISH A, et al. China’s response to the air pollution shock[J]. Nature Climate Change, 2014, 4(5): 306-309. |
19 | ZHANG Xiaoye. Characteristics of the chemical components of aerosol particles in the various regions over China[J]. Acta Meteorologica Sinica, 2014, 72(6): 1 108-1 117. |
19 | 张小曳. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J]. 气象学报, 2014, 72(6): 1 108-1 117. |
20 | LOHMANN U, FEICHTER J. Global indirect aerosol effects: a review[J]. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737. |
21 | TAO W K, CHEN J P, LI Z Q, et al. Impact of aerosols on convective clouds and precipitation[J]. Reviews of Geophysics, 2012, 50(2). DOI: 10.1029/2011RG000369 . |
22 | GAO Xuejie, LIN Yihua, ZHAO Zongci. Modelling the effects of anthropogenic sulfate in climate change by using a regional climate model[J]. Journal of Tropical Meteorology, 2003, 19(2): 169-176. |
22 | 高学杰, 林一骅, 赵宗慈. 用区域气候模式模拟人为硫酸盐气溶胶在气候变化中的作用[J]. 热带气象学报, 2003, 19(2): 169-176. |
23 | LIU Hongnian, ZHANG Li. The climate effects of anthropogenic aerosols of different emission scenarios in China[J]. Chinese Jouranl of Geophys, 2012, 55(6): 1 867-1 875. |
23 | 刘红年, 张力. 中国不同排放情景下人为气溶胶的气候效应[J]. 地球物理学报, 2012, 55(6): 1 867-1 875. |
24 | LUO Kai, SHENG Lifang. Temporal and spatial variation of aerosol optical depth over East Asia and its probable impact on climate[J]. Periodical of Ocean University of China, 2012, 42(11): 8-18. |
24 | 罗凯, 盛立芳. 东亚气溶胶光学厚度时空变化特征及其对气候可能的影响[J]. 中国海洋大学学报(自然科学版), 2012, 42(11): 8-18. |
25 | SHI Guangyu, WANG Biao, ZHANG Hua, et al. The radiative and climatic effects of atmospheric aerosols[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 826-840. |
25 | 石广玉, 王标, 张华, 等. 大气气溶胶的辐射与气候效应[J]. 大气科学, 2008, 32(4): 826-840. |
26 | ZHANG Qingyun. The variations of the precipitation and water resources in North China since 1880[J]. Plateau Meteorology, 1999, 18(4): 486-495. |
26 | 张庆云. 1880年以来华北降水及水资源的变化[J]. 高原气象, 1999, 18(4): 486-495. |
27 | HE H Z, ZHANG F Q. Diurnal variations of warm-season precipitation over Northern China[J]. Monthly Weather Review, 2010, 138(4): 1 017-1 025. |
28 | YUAN W H, SUN W, CHEN H M, et al. Topographic effects on spatiotemporal variations of short-duration rainfall events in warm season of central North China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11 223-11 234. |
29 | BLACKADAR A K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society, 1957, 38(5): 283-290. |
30 | XUE M, LUO X, ZHU K F, et al. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 5 090-5 115. |
31 | DU Y Y, ZHANG Q H, CHEN Y L, et al. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer[J]. Journal of Climate, 2014, 27: 5 747-5 767. |
32 | LIU H B, HE M Y, WANG B, et al. Advances in low-level jet research and future prospects[J]. Journal of Meteorological Research, 2014, 28(1): 57-75. |
33 | SUN W, LI J, YU R C, et al. Circulation structures leading to propagating and non-propagating heavy summer rainfall in central North China[J]. Climate Dynamics, 2018, 51(9): 3 447-3 465. |
34 | YU R C, LI J, CHEN H M. Diurnal variation of surface wind over central Eastern China[J]. Climate Dynamics, 2009, 33(7): 1 089-1 097. |
35 | CHENG C L, LI Q C, DOU Y J, et al. Diurnal variation and distribution of short-duration heavy rainfall in Beijing-Tianjin-Hebei region in summer based on high-density automatic weather station data[J]. Atmosphere, 2021, 12(10). DOI: /10.3390/atmos12101263 . |
36 | SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125-161. |
37 | SHUKLA J, MINTZ Y. Influence of land-surface evapotranspiration on the Earth’s climate[J]. Science, 1982, 215(4 539): 1 498-1 501. |
38 | XU Zhongfeng, ZHANG Weiyue, GUO Weidong. The impacts of large scale land use change on regional air temperature and its variability[J]. China Basic Science, 2015, 17(5): 34-39. |
38 | 徐忠峰, 张炜月, 郭维栋. 大尺度土地利用变化对区域气温及其变率的影响[J]. 中国基础科学, 2015, 17(5): 34-39. |
39 | PIELKE S R. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall[J]. Reviews of Geophysics, 2001, 39(2): 151-177. |
40 | BAO X H, ZHANG F Q. Impacts of the mountain-Plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over Northern China[J]. Atmospheric Chemistry and Physics, 2013, 13(14): 6 965-6 982. |
41 | ZHENG X Y, ELTAHIR E A B. A soil moisture-rainfall feedback mechanism: 2. numerical experiments[J]. Water Resources Research, 1998, 34(4): 777-785. |
42 | FINDELL K L, ELTAHIR E A B. Atmospheric controls on soil moisture-boundary layer interactions. part I: framework development[J]. Journal of Hydrometeorology, 2003, 4(3): 552-569. |
43 | LUAN Lan, MENG Xianhong, Shihua Lü, et al. Simulation on afternoon convective precipitation triggered by soil moisture over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(4): 873-885. |
43 | 栾澜, 孟宪红, 吕世华, 等. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885. |
44 | SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125-161. |
45 | TAYLOR C M, de JEU R A M, GUICHARD F, et al. Afternoon rain more likely over drier soils[J]. Nature, 2012, 489 (7 416): 423-426. |
46 | TAYLOR C M, GOUNOU A, GUICHARD F, et al. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns[J]. Nature Geoscience, 2011, 4(7): 430-433. |
47 | SONG Y Y, WEI J F. Diurnal cycle of summer precipitation over the North China Plain and associated land-atmosphere interactions: evaluation of ERA5 and MERRA-2[J]. International Journal of Climatology, 2021, 41(13): 6 031-6 046. |
48 | PAN H, CHEN G X. Diurnal variations of precipitation over North China regulated by the mountain-Plains solenoid and boundary-layer inertial oscillation[J]. Advances in Atmospheric Sciences, 2019, 36(8): 863-884. |
49 | SCH?R C, LüTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate, 1999,12(3): 722-741. |
50 | WEI J, SU H, YANG Z L. Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe[J]. Climate Dynamics, 2016, 46(1): 467-481. |
51 | BETTS A K, JAKOB C. Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D20). DOI: 10.1029/2001JD000427 . |
52 | DAI A G, GIORGI F, TRENBERTH K E. Observed and model-simulated diurnal cycles of precipitation over the contiguous United States[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D6): 6 377-6 402. |
53 | DAI A G, TRENBERTH K E. The diurnal cycle and its depiction in the community climate system model[J]. Journal of Climate, 2004, 17(5): 930-951. |
54 | PREIN A F, LANGHANS W, FOSSER G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361. |
55 | GUO J P, DENG M J, LEE S S, et al. Delaying precipitation and lightning by air pollution over the Pearl River Delta. part I: observational analyses[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(11): 6 472-6 488. |
56 | LEE S S, GUO J P, LI Z Q. Delaying precipitation by air pollution over the Pearl River Delta: 2. model simulations[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11 739-11 760. |
57 | SUN Y, ZHAO C. Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China[J]. Atmospheric Chemistry Physics, 2021, 21(21): 16 555-16 574. |
58 | ZHOU S Y, YANG J, WANG W, et al. An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing-Tianjin-Hebei[J]. Atmospheric Chemistry and Physics, 2020, 20: 5 211-5 229. |
59 | WEI J F, JIN Q J, YANG Z L, et al. Land-atmosphere-aerosol coupling in North China during 2000-2013[J]. International Journal of Climatology, 2017, 37: 1 297-1 306. |
60 | WEI J F, LU B Y, SONG Y Y, et al. Impact of aerosol radiative effect on the diurnal cycle of summer precipitation over North China: distinct results from simulations with parameterized versus explicit convection[J]. Geophysical Research Letters, 2022, 49(9). DOI: 10.1029/2022GL098795 . |
/
〈 |
|
〉 |