研究论文

基于IHA-RVA法的沱沱河水沙变化及归因分析

  • 许杏 ,
  • 江玉吉 ,
  • 张凡 ,
  • 曾辰 ,
  • 王莉 ,
  • 王冠星 ,
  • 江鹏
展开
  • 1.中国科学院青藏高原研究所, 青藏高原地球系统与资源环境国家重点实验室, 北京 100101
    2.中国科学院大学, 北京 100049
    3.西藏自治区水文水资源勘测局, 西藏 拉萨 850000
    4.河海大学水文水资源学院, 江苏 南京 210098
许杏(1999-),女,湖南岳阳人,博士研究生,主要从事高寒流域水沙模拟研究. E-mail:xuxing@itpcas.ac.cn
张凡(1976-),女,山东沂水人,研究员,主要从事青藏高原水沙及水环境研究. E-mail:zhangfan@itpcas.ac.cn

收稿日期: 2022-12-21

  修回日期: 2023-05-25

  网络出版日期: 2023-08-28

基金资助

国家自然科学基金项目“青藏高原典型高山冻土流域融雪侵蚀机理研究与过程模拟”(41877081)

Variation and Attribution Analysis of Runoff and Sediment Flux in the Tuotuo River using IHA-RVA

  • Xing XU ,
  • Yuji JIANG ,
  • Fan ZHANG ,
  • Chen ZENG ,
  • Li WANG ,
  • Guanxing WANG ,
  • Peng JIANG
Expand
  • 1.State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Hydrology and Water Resources Survey Bureau of Tibet Autonomous Region, Lhasa 850000, China
    4.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
XU Xing (1999-), female, Yueyang City, Hunan Province, Ph. D student. Research areas include simulation of runoff and sediment processes in cold regions. E-mail: xuxing@itpcas.ac.cn
ZHANG Fan (1976-), female, Yishui City, Shandong Province, Professor. Research areas include runoff, sediment and water environment processes in the Tibetan Plateau. E-mail: zhangfan@itpcas.ac.cn

Received date: 2022-12-21

  Revised date: 2023-05-25

  Online published: 2023-08-28

Supported by

the National Natural Science Foundation of China “Snowmelt erosion mechanism of typical alpine permafrost watershed in the Tibetan Plateau”(41877081)

摘要

近年来青藏高原暖湿化加剧了江河源区产汇流和侵蚀输沙过程的变化,而冰冻圈要素的变化使得该过程更加复杂。采用突变检验与IHA-RVA分析了沱沱河1986—2017年径流量和输沙量的变化程度,并基于PLS-PM结合其他环境因子对水沙通量的变化进行归因分析,结果表明:沱沱河水沙通量于1998年突变后显著增加,整体改变度分别为71.2%和67.5%,为高度改变,表明气候变化对河源区水沙通量的影响不亚于人类活动对中下游的影响。在气温与降水的驱动下,5~10月水沙通量显著增加,各月变化程度受到土壤、河道冻结程度以及植被变化的影响;年输沙量的变化由极端输沙事件的增加主导,降水量、冰川融水量和土壤解冻程度是主要影响因素。寒区水沙过程受降水、冰川、土壤冻融及植被的综合影响,有待对其进一步研究以保障青藏高原生态屏障建设与周边区域的可持续发展。

本文引用格式

许杏 , 江玉吉 , 张凡 , 曾辰 , 王莉 , 王冠星 , 江鹏 . 基于IHA-RVA法的沱沱河水沙变化及归因分析[J]. 地球科学进展, 2023 , 38(8) : 826 -837 . DOI: 10.11867/j.issn.1001-8166.2023.046

Abstract

In recent decades, the warming and humidification of the Tibetan Plateau have aggravated changes in the runoff and sediment transport processes in the headwater area, and the uniqueness of the cryosphere has made them more complex. In this study, abruption tests and IHA-RVA were performed to assess the variation in the runoff and sediment flux of the Tuotuo River before and after the abrupt change from 1986 to 2017. PLS-PM attribution analysis was performed using environmental factors for runoff and sediment flux change attribution. The following three important conclusions were drawn: first, from 1986 to 2017, the runoff and sediment flux of the Tuotuo River changed abruptly around 1998, and the overall degrees of change were 71.2% and 67.5%, respectively; both were highly altered. This indicates that the impact of climate change on runoff and sediment flux in the headwater was not smaller than that of human activity downstream. Second, under the influence of temperature and precipitation, runoff and sediment fluxes from May to October increased significantly, and the degree of abruption was affected by the thawing degree of the soil, river channel, and vegetation coverage. The variation in the sediment flux was dominated by extreme sediment transport events, which were primarily caused by increased rainfall, ice melting, and soil thawing. Third, the runoff and sediment processes in cold regions are complex because of the combined influence of rainfall, glaciers, soil freeze-thaw, and vegetation. Therefore, it is necessary to further study the local region's ecological security and sustainable development downstream.

参考文献

1 WANG B, BAO Q, HOSKINS B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14). DOI:10.1029/2008GL034330 .
2 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015,60(32): 3 025-3 035.
2 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来 [J]. 科学通报, 2015, 60(32): 3 025-3 035.
3 ZHANG Fan, SHI Xiaonan, ZENG Chen, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 274-1 284.
3 张凡, 史晓楠, 曾辰, 等. 青藏高原河流输沙量变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1 274-1 284.
4 LI D F, LU X X, OVEREEM I, et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia[J]. Science, 2021, 374(6 567): 599-603.
5 ZHANG T, LI D F, EAST A E, et al. Warming-driven erosion and sediment transport in cold regions[J]. Nature Reviews Earth & Environment, 2022, 3(12): 832-851.
6 WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2021, 36(7): 740-752.
6 魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
7 ZHANG F, SHI X N, ZENG C, et al. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau[J]. Science Bulletin, 2020, 65(5): 410-418.
8 LI D F, LI Z W, ZHOU Y J, et al. Substantial increases in the water and sediment fluxes in the headwater region of the Tibetan Plateau in response to global warming[J]. Geophysical Research Letters, 2020, 47(11). DOI:10.1029/2020GL087745 .
9 YAN Xia, ZHOU Yinjun, YAO Shiming, et al. Study on the influence of different land cover types on runoff and sediment transport in the source region of the Yangtze River [J]. Journal of Sediment Research, 2020, 45(4): 45-51.
9 闫霞, 周银军, 姚仕明, 等. 长江源区不同地表覆盖类型对河流径流输沙的影响 [J]. 泥沙研究, 2020, 45(4): 45-51.
10 LUO Yu, QIN Ningsheng, PANG Yishu, et al. Effect of climate warming on the runoff of source regions of the Yangtze River:take Tuotuo River Basin as an example [J]. Journal of Glaciology and Geocryology, 2020, 42(3): 952-964.
10 罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析——以沱沱河为例[J]. 冰川冻土, 2020, 42(3): 952-964.
11 LUO Yu, QIN Ningsheng, ZHOU Bin, et al. Runoff characteristics and hysteresis to precipitation in Tuotuo River Basin in source region of Yangtze River during 1961-2011[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 22-28.
11 罗玉, 秦宁生, 周斌, 等. 长江源区沱沱河流域1961—2011年径流特征及其对降水的滞后效应[J]. 水土保持通报, 2019, 39(2): 22-28.
12 RICHTER B D, BAUMGARTNER J V, POWELL J, et al. A method for assessing hydrologic alteration within ecosystems[J]. Conservation Biology, 1996, 10(4): 1 163-1 174.
13 RICHTER B, BAUMGARTNER J, WIGINGTON R, et al. How much water does a river need?[J]. Freshwater Biology, 1997, 37(1): 231-249.
14 RICHTER B D, BAUMGARTNER J V, BRAUN D P, et al. A spatial assessment of hydrologic alteration within a river network[J]. Regulated Rivers: Research & Management, 1998, 14(4): 329-340.
15 YANG T, XU C Y, CHEN X, et al. Assessing the impact of human activities on hydrological and sediment changes (1953-2000) in nine major catchments of the Loess Plateau, China[J]. River Research and Applications, 2010, 26(3): 322-340.
16 BAN Xuan, JIANG Liuzhi, ZENG Xiaohui, et al. Quantifying the spatio-temporal variation of flow and sediment in the middle Yangtze River after the impoundment of the Three Gorges[J]. Advances in Water Science, 2014, 25(5): 650-657.
16 班璇, 姜刘志, 曾小辉, 等. 三峡水库蓄水后长江中游水沙时空变化的定量评估[J]. 水科学进展, 2014, 25(5): 650-657.
17 LI Dan, XU Wen, YE Changqing, et al. Variation characteristics analysis of hydrological regime of Wanquan River Basin under interference of climate change and human activities[J]. Water Resources and Power, 2019, 37(12): 14-17.
17 李旦, 徐文, 叶长青, 等. 气候变化和人类活动干扰下万泉河流域水文情势变化特征分析 [J]. 水电能源科学, 2019, 37(12): 14-17.
18 SUN Yan, WANG Xiuru, WANG Minghao, et al. Hydrological and sediment regime and synchronous asynchronous encounter of rich-poor runoff and sediment change in the Yellow River Basin in Qucun[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(4): 489-496.
18 孙妍, 王秀茹, 王铭浩, 等. 渠村引黄口流域水沙情势变化和丰枯遭遇分析 [J]. 北京师范大学学报(自然科学版), 2019, 55(4): 489-496.
19 ZHANG Ruqiang, LIU Junguo, MAO Ganquan, et al. Flow regime alterations of upper Heihe River based on improved RVA[J]. Arid Zone Research, 2021, 38(1): 29-38.
19 张如强, 刘俊国, 冒甘泉, 等. 基于改进RVA法的黑河上游水文情势变化分析[J]. 干旱区研究, 2021, 38(1): 29-38.
20 TENENHAUS M, VINZI V E, CHATELIN Y M, et al. PLS path modeling[J]. Computational Statistics & Data Analysis, 2005, 48(1): 159-205.
21 ZHANG T, LI D F, KETTNER A J, et al. Constraining dynamic sediment-discharge relationships in cold environments: the Sediment-Availability-Transport (SAT) model[J]. Water Resources Research, 2021, 57(10). DOI:10.1029/2021WR030690 .
22 Xinmiao Lü, ZHENG Du. Impact of global change on alpine meadow ecosystems in the source region of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2006(5): 603-607.
22 吕新苗,郑度.气候变化对长江源地区高寒草甸生态系统的影响[J].长江流域资源与环境, 2006(5): 603-607.
23 WEI Fengying. Modern climate statistical diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 1999.
23 魏凤英. 现代气候统计诊断与预测技术[M].北京: 气象出版社, 1999.
24 SHIAU J T, WU F C. Compromise programming methodology for determining instream flow under multiobjective water allocation criteria[J]. Journal of the American Water Resources Association, 2006, 42(5): 1 179-1 191.
25 TENENHAUS M, AMATO S, VINZI V E. A global Goodness-of-Fit index for PLS structural equation modelling[C]// Proceedings of the 42nd SIS scientific meeting, 2004: 739-742
26 FU C H, LARGE S, KNIGHT B, et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems[J]. Journal of Marine Systems, 2015, 148: 101-111.
27 WANG Xuege, LIU Hongchao, LI Hongyan. The hydrological regime assessment of Lalin River Basin based on MK-RVA[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2021, 22(3): 64-73.
27 汪雪格, 刘洪超, 李红艳. 基于MK-RVA的拉林河流域水文情势评估[J]. 长春工程学院学报(自然科学版), 2021, 22(3): 64-73.
28 GUO Wenxian, CHEN Dingxin, LI Yue, et al. IHA-RVA-based assessment of eco-hydrological regime of Lower Jinshajiang River[J]. Water Resources and Hydropower Engineering, 2018, 49(8): 155-162.
28 郭文献, 陈鼎新, 李越, 等. 基于IHA-RVA法金沙江下游生态水文情势评价[J]. 水利水电技术, 2018, 49(8): 155-162.
29 TU Yulü, LI Yinghai, GUO Jiali, et al. Analysis for hydrological regime of the lower reaches of Geheyan Reservoir based on IHA-RVA method[J]. Pearl River, 2020, 41(11): 1-8.
29 涂玉律, 李英海, 郭家力, 等. 基于IHA-RVA法的隔河岩水库下游水文情势分析[J]. 人民珠江, 2020, 41(11): 1-8.
30 HUANG Y H, HUANG B B, QIN T L, et al. Assessment of hydrological changes and their influence on the aquatic ecology over the last 58 years in Ganjiang Basin, China[J]. Sustainability, 2019, 11(18). DOI:10.3390/su11184882 .
31 LIN K R, ZHANG F, ZHANG Q, et al. Fuzzy-based comprehensive evaluation of environmental flow alteration[C]// Hydrologic modeling. Singapore: Springer, 2018: 621-638.
32 MA Chao, CUI Ranxin. Analysis on changes in flow and sediment at Toudaoguai on Yellow River using range of variability approach[J]. Journal of Hydroelectric Engineering, 2018, 37(5): 58-68.
32 马超, 崔冉昕. 基于变化范围法的黄河头道拐站水沙变化分析[J]. 水力发电学报, 2018, 37(5): 58-68.
33 ETTEMA R, KEMPEMA E W. River-ice effects on gravel-bed channels[C]// Gravel-bed rivers: processes, tools, environments, 2012: 523-540.
34 ZHANG F, HU Y D, FAN X M, et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau[J]. CATENA, 2022, 209. DOI:10.1016/j.catena.2021.105797 .
35 NIU Y L, LI S Y, LIU Y, et al. Regulation of alpine meadow patch coverage on runoff and sediment under natural rainfall on the eastern Qinghai-Tibetan Plateau[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127101 .
36 SHI X N, ZHANG F, LU X X, et al. The response of the suspended sediment load of the headwaters of the Brahmaputra River to climate change: quantitative attribution to the effects of hydrological, cryospheric and vegetation controls[J]. Global and Planetary Change, 2022, 210. DOI:10.1016/j.gloplacha.2022.103753 .
37 LI Z W, XU X L, ZHU J X, et al. Can precipitation extremes explain variability in runoff and sediment yield across heterogeneous Karst watersheds?[J]. Journal of Hydrology, 2021, 596. DOI:10.1016/j.jhydrol.2020.125698 .
38 WANG R, YAO Z J, WU S S, et al. Glacier retreat and its impact on summertime run-off in a high-altitude ungauged catchment[J]. Hydrological Processes, 2017, 31(21): 3 672-3 681.
文章导航

/