冰期指数法模拟北半球冰盖演化的不确定性研究
收稿日期: 2023-04-04
修回日期: 2023-05-04
网络出版日期: 2023-06-07
基金资助
中国科学院青促会优秀会员项目(Y202023);国家自然科学基金委“青藏高原地球系统”基础科学中心项目(41988101);国家科技专项“第二次青藏高原综合科学考察研究”项目“高原风化剥蚀历史及气候环境效应”(2019QZKK0707)
Investigating Uncertainty of Simulating Northern Hemisphere Ice Sheet Evolution by Glacial Index Method
Received date: 2023-04-04
Revised date: 2023-05-04
Online published: 2023-06-07
Supported by
the Outstanding Member Projects of the Chinese Academy of Sciences for Youth Promotion(Y202023);The Basic Science Center for Tibetan Plateau Earth System(Grant 41988101);The Second Tibetan Plateau Scientific Expedition and Research, Ministry of Science and Technology of China "Weathering and erosion history of Plateau and its climatic and environmental effects” Sub-Project of Project 7 “Plateau Growth and Evolution”(2019QZKK0707)
IPCC第六次评估报告(AR6)显示,自20世纪起极地冰盖持续消融,全球海平面不断上升。目前对于地球冰盖未来的预测以及过去的演变历史尚不明确,而数值模拟能够提供一种有效的解决方案。在冰盖模拟研究中,冰期指数法可依据古气候代用指标将离散的气候强迫转化为连续的气候强迫,用于冰盖演变的瞬态模拟。基于该方法,利用2组(共6条)分别代表全球海平面和温度变化的代用指标,开展末次冰期旋回北半球冰盖的时空演变模拟研究,结果表明:
张宇翱 , 张旭 , 昝金波 , 方小敏 . 冰期指数法模拟北半球冰盖演化的不确定性研究[J]. 地球科学进展, 2023 , 38(6) : 619 -630 . DOI: 10.11867/j.issn.1001-8166.2023.031
The Intergovernmental Panel on Climate Change Sixth Assessment Report (AR6) stresses threat of the continuous melting of polar ice sheets and hence rising global sea levels on our socioeconomic and living environment. However, large uncertainty remains in future projections of Earth’s ice sheet, which might be reduced by improving our understanding of its evolution history and associated dynamics by ice-sheet modeling. Glacial index method is an effective approach to investigate transient ice sheet change by interpolating discrete climate forcing into continuous climate forcing based on paleoclimate proxies. This indicates the choice of paleoclimate proxy might be of crucial impact on simulated transient ice sheet change. Here we investigate this issue with a focus on the tempo-spatial evolution of the Northern Hemisphere ice sheet during the last glacial cycle using two sets (six in total) of proxies representing global sea level and temperature changes, respectively. Three key conclusions are summarized in the following. First, the characteristics of proxy trajectory have a significant influence on the simulated ice volume’s evolutionary characteristics. Second, the presence of millennial-scale abrupt climate change events in proxies lowers the simulated overall ice volume when tendency and amplitude of proxies are similar. Third, ice sheet extent is constrained by the summer 0 °C isotherm which is modulated by the tendency and amplitude of different proxies, even when subjected to the same Last Glacial Maximum climate forcing. Therefore, our results emphasize the need to carefully consider the characteristics of paleoclimate proxies when using the glacial index method for studying global ice sheet changes over time. Understanding the limitations and potential biases associated with the chosen proxies is crucial to avoid misinterpretation and overstatement of modeling results.
Key words: Ice sheet simulation; Last glacial cycle; Glacial index method
1 | HEINRICH H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2): 142-152. |
2 | DANSGAARD W, WHITE J W C, JOHNSEN S J. The abrupt termination of the Younger Dryas climate event[J]. Nature, 1989, 339(6 225): 532-534. |
3 | BOND G, BROECKER W, JOHNSEN S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6 442): 143-147. |
4 | HAYS I J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record[J]. Milankouitch and Climate, NATO ASI Series, Series C: Mathematical and Physical Sciences, 1984, 126: 269-305. |
5 | LISIECKI L E. Links between eccentricity forcing and the 100,000-year glacial cycle[J]. Nature Geoscience, 2010, 3(5): 349-352. |
6 | ABE-OUCHI A, SAITO F, KAWAMURA K, et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume[J]. Nature, 2013, 500(7 461): 190-193. |
7 | TARASOV L, PELTIER W R. A high-resolution model of the 100 ka ice-age cycle[J]. Annals of Glaciology, 1997, 25: 58-65. |
8 | TARASOV L, PELTIER W R. Terminating the 100 kyr ice age cycle[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D18): 21 665-21 693. |
9 | CHARBIT S, KAGEYAMA M, ROCHE D, et al. Investigating the mechanisms leading to the deglaciation of past continental Northern Hemisphere ice sheets with the CLIMBER-GREMLINS coupled model[J]. Global and Planetary Change, 2005, 48(4): 253-273. |
10 | ADELINE F, CATHERINE R, GILLES R. Modelling of Last Glacial Maximum ice sheets using different accumulation parameterizations[J]. Annals of Glaciology, 1997, 24: 223-228. |
11 | PHILIPPE H, STEPHEN T. A three-dimensional climate—ice-sheet model applied to the Last Glacial Maximum[J]. Annals of Glaciology, 1997, 25: 333-339. |
12 | RAMSTEIN G, FLUTEAU F, BESSE J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6 627): 788-795. |
13 | YAMAGISHI T, ABE-OUCHI A, SAITO F, et al. Re-evaluation of paleo-accumulation parameterization over Northern Hemisphere ice sheets during the ice age examined with a high-resolution AGCM and a 3-D ice-sheet model[J]. Annals of Glaciology, 2005, 42: 433-440. |
14 | GREVE R, WYRWOLL K H, EISENHAUER A. Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene[J]. Annals of Glaciology, 1999, 28: 1-8. |
15 | CHARBIT S, RITZ C, PHILIPPON G, et al. Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle[J]. Climate of the Past, 2007, 3(1): 15-37. |
16 | NIU L, LOHMANN G, HINCK S, et al. The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial cycle using PMIP3 models[J]. Journal of Glaciology, 2019, 65(252): 645-661. |
17 | MARTIN M A, WINKELMANN R, HASELOFF M, et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK)-part 2: dynamic equilibrium simulation of the Antarctic ice sheet[J]. The Cryosphere, 2011, 5(3): 727-740. |
18 | WINKELMANN R, MARTIN M A, HASELOFF M, et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK)-part 1: model description[J]. The Cryosphere, 2011, 5(3): 715-726. |
19 | ALBRECHT T, WINKELMANN R, LEVERMANN A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)-part 1: boundary conditions and climatic forcing[J]. The Cryosphere, 2020, 14(2): 599-632. |
20 | ALBRECHT T, WINKELMANN R, LEVERMANN A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)-part 2: parameter ensemble analysis[J]. The Cryosphere, 2020, 14(2): 633-656. |
21 | LINGLE C S, CLARK J A. A numerical model of interactions between a marine ice sheet and the solid earth: application to a West Antarctic ice stream[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 1 100-1 114. |
22 | BUELER E, LINGLE C S, BROWN J. Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations[J]. Annals of Glaciology, 2007, 46: 97-105. |
23 | AMANTE C, EAKINS B. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[Z]. NOAA technical memorandum NESDIS NGDC, 2009. |
24 | DAVIES J H. Global map of solid Earth surface heat flow[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4 608-4 622. |
25 | CALOV R, GREVE R. A semi-analytical solution for the positive degree-day model with stochastic temperature variations[J]. Journal of Glaciology, 2005, 51(172): 173-175. |
26 | KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471. |
27 | ADLER R F, HUFFMAN G J, CHANG A, et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1 147-1 167. |
28 | ZHANG X, LOHMANN G, KNORR G, et al. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation[J]. Climate of the Past, 2013, 9(5): 2 319-2 333. |
29 | ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7 005): 147-151. |
30 | MARTRAT B, GRIMALT J O, SHACKLETON N J, et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin[J]. Science, 2007, 317(5 837): 502-507. |
31 | SHAKUN J D, LEA D W, LISIECKI L E, et al. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling[J]. Earth and Planetary Science Letters, 2015, 426: 58-68. |
32 | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1). DOI:10.1029/2004PA001071 . |
33 | GRANT K M, ROHLING E J, BAR-MATTHEWS M, et al. Rapid coupling between ice volume and polar temperature over the past 150, 000?years[J]. Nature, 2012, 491(7 426): 744-747. |
34 | LEA D W, MARTIN P A, PAK D K, et al. Reconstructing a 350ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 283-293. |
35 | DAVIS B. Calculating glacier ice volumes and see level equivalents[R]. IPCC, Antarctic Glaciers, 2017. |
36 | BARD E, HAMELIN B, FAIRBANKS R G. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130, 000 years[J]. Nature, 1990, 346(6 283): 456-458. |
37 | BARD E, HAMELIN B, FAIRBANKS R G, et al. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals[J]. Nature, 1990, 345(6 274): 405-410. |
38 | KLEMAN J, JANSSON K, de ANGELIS H, et al. North American Ice Sheet build-up during the last glacial cycle, 115-21kyr[J]. Quaternary Science Reviews, 2010, 29(17/18): 2 036-2 051. |
39 | BATCHELOR C L, MARGOLD M, KRAPP M, et al. The configuration of northern hemisphere ice sheets through the Quaternary[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-11601-2 . |
40 | GOWAN E J, ZHANG X, KHOSRAVI S, et al. A new global ice sheet reconstruction for the past 80?000 years[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-21469-w . |
41 | KUHLE M. Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate[J]. Quaternary International, 1998, 45: 71-108. |
42 | SHI Yafeng. The quaternary glaciations and environmental variations in China[M]. Shijiazhuang: Hebei Science & Technology Press, 2006. |
42 | 施雅风. 中国第四纪冰川与环境变化[M]. 石家庄: 河北科学技术出版社, 2006. |
43 | ZHAO Jingdong, SHI Yafeng, WANG Jie. Comparison between quaternary glaciations in China and the Marine oxygen Isotope Stage (MIS): an improved Schema[J]. Acta Geographica Sinica, 2011, 66(7):867-884. |
43 | 赵井东, 施雅风, 王杰. 中国第四纪冰川演化序列与MIS对比研究的新进展[J]. 地理学报, 2011, 66(7):867-884. |
44 | GREVE R, BLATTER H. Dynamics of ice sheets and glaciers[M]. Dordrecht: Springer, 2009. |
45 | ULLMAN D J, CARLSON A E, ANSLOW F S, et al. Laurentide ice-sheet instability during the lastdeglaciation[J]. Nature Geoscience, 2015, 8(7): 534-537. |
46 | van de BERG W J, van den BROEKE M, ETTEMA J, et al. Significant contribution of insolation to Eemian melting of the Greenland ice sheet[J]. Nature Geoscience, 2011, 4(10): 679-683. |
47 | MARSHALL S J, JAMES T S, CLARKE G K C. North American ice sheet reconstructions at the last glacial maximum[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 175-192. |
48 | ZWECK C, HUYBRECHTS P. Modeling of the Northern Hemisphere ice sheets during the last glacial cycle and glaciological sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D7). DOI:10.1029/2004JD005489 . |
49 | NIU L, LOHMANN G, GOWAN E J. Climate noise influences ice sheet mean state[J]. Geophysical Research Letters, 2019, 46(16): 9 690-9 699. |
50 | ULLMAN D J, LEGRANDE A N, CARLSON A E, et al. Assessing the impact of Laurentide Ice Sheet topography on glacial climate[J]. Climate of the Past, 2014, 10(2): 487-507. |
51 | L?FVERSTR?M M, CABALLERO R, NILSSON J, et al. Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle[J]. Climate of the Past, 2014, 10(4): 1 453-1 471. |
52 | ZHANG X, LOHMANN G, KNORR G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7 514): 290-294. |
53 | ZHANG Zhongshi, YAN Qing, ZHANG Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during quaternary[J]. Quaternary Sciences, 2017, 37(5):1 009-1 016. |
53 | 张仲石, 燕青, 张冉, 等. 第四纪北半球冰盖发育与东亚气候的遥相关[J]. 第四纪研究, 2017, 37(5):1 009-1 016. |
/
〈 |
|
〉 |