古近纪Danian期早期热事件Dan-C2研究进展
收稿日期: 2022-12-13
修回日期: 2023-03-07
网络出版日期: 2023-05-10
基金资助
国家自然科学基金面上项目“南雄盆地古近纪早期热事件的陆相记录与碳来源示踪”(42277440)
Research Progress on the Dan-C2 Thermal Event of the Early Danian in the Paleogene
Received date: 2022-12-13
Revised date: 2023-03-07
Online published: 2023-05-10
Supported by
the National Natural Science Foundation of China “Study of the early Paleocene hyperthermals in Nanxiong Basin: terrestrial records construction and carbon source(s) tracing”(42277440)
早古近纪是新生代典型的温室气候期,期间发生了一系列快速短暂的、以碳同位素(δ13C)负偏移为特征的增温事件(也被称为极热事件,hyperthermals),其中Danian期早期Dan-C2事件是白垩纪末期生物大灭绝之后出现的第一个热事件,因而其环境效应和生态效应受到了广泛关注。但是随着研究的不断深入,关于Dan-C2事件的争议也不断增加。通过总结Dan-C2热事件研究的最新成果,对其全球性意义及其触发机制进行综述后发现:
关键词: 早古近纪; Dan-C2热事件; 碳同位素(δ13C); 全球性意义; 触发机制
王梦迪 , 马明明 , 邱煜丹 , 黄惠欣 , 刘秀铭 . 古近纪Danian期早期热事件Dan-C2研究进展[J]. 地球科学进展, 2023 , 38(5) : 483 -492 . DOI: 10.11867/j.issn.1001-8166.2023.017
The early Paleogene was a typical greenhouse climate period in the Cenozoic, during which a series of rapid and short-lived warming events (termed “hyperthermals”) occurred. Hyperthermals were characterized by negative carbon isotope excursion. Among them, the Dan-C2 thermal event of the early Danian is considered to be the first to occur after the biological mass extinction at the end of the Cretaceous; thus, its environmental significance and ecological effects have received widespread attention. However, as research continues, controversies regarding the Dan-C2 event continue to grow:
1 | BORNEMANN A, SCHULTE P, SPRONG J, et al. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt)[J]. Journal of the Geological Society, 2009, 166(6): 1 135-1 142. |
2 | BRALOWER T J, PREMOLI SILVA I, MALONE M J, et al. New evidence for abrupt climate change in the Cretaceous and Paleogene: an Ocean Drilling Program expedition to Shatsky Rise, northwest Pacific[J]. GSA Today, 2002, 12(11): 4-10. |
3 | QUILLéVéRé F, NORRIS R D, KROON D, et al. Transient ocean warming and shifts in carbon reservoirs during the early Danian[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 600-615. |
4 | CRAMER B S, WRIGHT J D, KENT D V, et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)[J]. Paleoceanography, 2003, 18(4). DOI:10.1029/2003PA000909 . |
5 | BARNET J S K, LITTLER K, WESTERHOLD T, et al. A high-fidelity benthic stable isotope record of late Cretaceous-early Eocene climate change and carbon-cycling[J]. Paleoceanography and Paleoclimatology, 2019, 34(4): 672-691. |
6 | WESTERHOLD T, R?HL U, DONNER B, et al. A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209)[J]. Paleoceanography, 2011, 26(2). DOI:10.1029/2010PA002092 . |
7 | WESTERHOLD T, R?HL U, DONNER B, et al. Global extent of early Eocene hyperthermal events: a new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209)[J]. Paleoceanography and Paleoclimatology, 2018, 33(6): 626-642. |
8 | WESTERHOLD T, R?HL U, RAFFI I, et al. Astronomical calibration of the Paleocene time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(4): 377-403. |
9 | ALEGRET L, ORTIZ S, ARREGU?N-RODR?GUEZ G J, et al. Microfossil turnover across the uppermost Danian at Caravaca, Spain: paleoenvironmental inferences and identification of the latest Danian event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463: 45-59. |
10 | COCCIONI R, FRONTALINI F, CATANZARITI R, et al. Paleoenvironmental signature of the Selandian-Thanetian Transition Event (STTE) and Early Late Paleocene Event (ELPE) in the Contessa Road section (Western Neo-Tethys)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 523: 62-77. |
11 | BERNAOLA G, BACETA J I, ORUE-ETXEBARRIA X, et al. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees)[J]. Geological Society of America Bulletin, 2007, 119(7/8): 785-795. |
12 | COCCIONI R, FRONTALINI F, BANCALà G, et al. The Dan-C2 hyperthermal event at Gubbio (Italy): global implications, environmental effects, and cause(s)[J]. Earth and Planetary Science Letters, 2010, 297(1/2): 298-305. |
13 | KRAHL G, BOM M H H, KOCHHANN K G D, et al. Environmental changes occurred during the early Danian at the Rio Grande Rise, South Atlantic Ocean[J]. Global and Planetary Change, 2020, 191. DOI:10.1016/j.gloplacha.2020.103197 . |
14 | ABELS H A, CLYDE W C, GINGERICH P D, et al. Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals[J]. Nature Geoscience, 2012, 5(5): 326-329. |
15 | ABELS H A, LAURETANO V, van YPEREN A E, et al. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming[J]. Climate of the Past, 2016, 12(5): 1 151-1 163. |
16 | CHEN Z L, DONG X X, WANG X, et al. Spatial change of precipitation in response to the Paleocene-Eocene Thermal Maximum warming in China[J]. Global and Planetary Change, 2020, 194. DOI:10.1016/j.gloplacha.2020.103313 . |
17 | CHEN Z L, WANG X, HU J F, et al. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene thermal maximum record from central China[J]. Earth and Planetary Science Letters, 2014, 408: 331-340. |
18 | ZACHOS J C, MCCARREN H, MURPHY B, et al. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 242-249. |
19 | CUI Y, SCHUBERT B A. Atmospheric pCO2 reconstructed across five early Eocene global warming events[J]. Earth and Planetary Science Letters, 2017, 478: 225-233. |
20 | GRIFFITH E M, THOMAS E, LEWIS A R, et al. Bentho-pelagic decoupling: the marine biological carbon pump during Eocene hyperthermals[J]. Paleoceanography and Paleoclimatology, 2021, 36(3). DOI:10.1029/2020PA004053 . |
21 | CHEN Zuoling. Carbon-cycle dynamics during the Paleocene-Eocene thermal maximum[J]. Chinese Science Bulletin, 2022, 67(15): 1704-1714. |
21 | 陈祚伶. 古新世—始新世极热事件碳循环研究进展[J]. 科学通报, 2022, 67(15): 1 704-1 714. |
22 | OGG J G, BARDOT L, KROON D, et al. Aptian through Eocene magnetostratigraphic correlation of the Blake Nose Transect (Leg 171B), Florida continental margin[M]// Proceedings of the ocean drilling program, 171B scientific results. Ocean Drilling Program, 2001. |
23 | HUBER B T, MACLEOD K G, NORRIS R D. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the Cretaceous-Tertiary boundary: evidence from the subtropical North Atlantic[J]. Geological Society of America Special Papers, 2002, 356: 277-289. |
24 | NORRIS R D, R?HL U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition[J]. Nature, 1999, 401(6 755): 775-778. |
25 | ARREGU?N-RODR?GUEZ G J, BARNET J S K, LENG M J, et al. Benthic foraminiferal turnover across the Dan-C2 event in the eastern South Atlantic Ocean (ODP Site 1262)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572. DOI:10.1016/j.palaeo.2021.110410 . |
26 | HULL P M, BORNEMANN A, PENMAN D E, et al. On impact and volcanism across the Cretaceous-Paleogene boundary[J]. Science, 2020, 367(6 475): 266-272. |
27 | GILABERT V, ARENILLAS I, ARZ J A, et al. Multiproxy analysis of paleoenvironmental, paleoclimatic and paleoceanographic changes during the early Danian in the Caravaca section (Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576. DOI:10.1016/j.palaeo.2021.110513 . |
28 | GILABERT V, BATENBURG S J, ARENILLAS I, et al. Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain[J]. Geology, 2022, 50(1): 21-25. |
29 | KHOZYEM H, TANTAWY A A, MAHMOUD A, et al. Biostratigraphy and geochemistry of the Cretaceous-Paleogene (K/Pg) and early Danian event (Dan-C2), a possible link to deccan volcanism: new insights from Red Sea, Egypt[J]. Journal of African Earth Sciences, 2019, 160. DOI:10.1016/j.jafrearsci.2019.103645 . |
30 | MAHANIPOUR A, MUTTERLOSE J, PARANDAVAR M. Integrated bio-and chemostratigraphy of the Cretaceous-Paleogene boundary interval in the Zagros Basin (Iran, central Tethys)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587. DOI:10.1016/j.palaeo.2021.110785 . |
31 | SINNESAEL M, MONTANARI A, FRONTALINI F, et al. Multiproxy Cretaceous-Paleogene boundary event stratigraphy: an Umbria-marche basinwide perspective[M]// 250 million years of Earth history in central Italy: celebrating 25 years of the geological observatory of coldigioco. Geological Society of America, 2019. |
32 | EBINGHAUS A, JOLLEY D W, ANDREWS S D, et al. Lake sedimentological and ecological response to hyperthermals: boltysh impact crater, Ukraine[J]. Sedimentology, 2017, 64(6): 1 465-1 487. |
33 | GILMOUR I, GILMOUR M, JOLLEY D, et al. A high-resolution nonmarine record of an early Danian hyperthermal event, Boltysh crater, Ukraine[J]. Geology, 2013, 41(7): 783-786. |
34 | JOLLEY D W, DALY R J, EBINGHAUS A, et al. Centennial to decadal vegetation community changes linked to orbital and solar forcing during the Dan-C2 hyperthermal event[J]. Journal of the Geological Society, 2017, 174(6): 1 019-1 030. |
35 | JOLLEY D W, GILMOUR I, GILMOUR M, et al. Long-term resilience decline in plant ecosystems across the Danian Dan-C2 hyperthermal event, Boltysh crater, Ukraine[J]. Journal of the Geological Society, 2015, 172(4): 491-498. |
36 | MA M M, HE M, ZHAO M T, et al. Evolution of atmospheric circulation across the Cretaceous-Paleogene (K-Pg) boundary interval in low-latitude East Asia[J]. Global and Planetary Change, 2021, 199. DOI:10.1016/j.gloplacha.2021.103435 . |
37 | ZHAO M T, MA M M, HE M, et al. Evaluation of the four potential Cretaceous-Paleogene (K-Pg) boundaries in the Nanxiong Basin based on evidences from volcanic activity and paleoclimatic evolution[J]. Science China Earth Sciences, 2021, 64(4): 631-641. |
38 | MA M M, ZHANG W F, ZHAO M T, et al. Deccan Traps volcanism implicated in the extinction of non-avian dinosaurs in southeastern China[J]. Geophysical Research Letters, 2022, 49(24). DOI:10.1029/2022GL100342 . |
39 | GILMOUR I, JOLLEY D, KEMP D, et al. The early Danian hyperthermal event at Boltysh (Ukraine): relation to Cretaceous-Paleogene boundary events[M]// Volcanism, impacts, and mass extinctions: causes and effects. Geological Society of America, 2014. |
40 | ZACHOS J C, DICKENS G R, ZEEBE R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 279-283. |
41 | ZEEBE R E, ZACHOS J C, DICKENS G R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming[J]. Nature Geoscience, 2009, 2(8): 576-580. |
42 | PASSEY B H, LEVIN N E, CERLING T E, et al. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11 245-11 249. |
43 | BIRCH H, COXALL H K, PEARSON P N, et al. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals[J]. Marine Micropaleontology, 2013, 101: 127-145. |
44 | BIRCH H S, COXALL H K, PEARSON P N. Evolutionary ecology of early Paleocene planktonic foraminifera: size, depth habitat and symbiosis[J]. Paleobiology, 2012, 38(3): 374-390. |
45 | BIRCH H S, COXALL H K, PEARSON P N, et al. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary[J]. Geology, 2016, 44(4): 287-290. |
46 | KELLER G, MATEO P, PUNEKAR J, et al. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: implications for the Anthropocene[J]. Gondwana Research, 2018, 56: 69-89. |
47 | SCHOENE B, EDDY M P, SAMPERTON K M, et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction[J]. Science, 2019, 363(6 429): 862-866. |
48 | SVENSEN H, PLANKE S, MALTHE-S?RENSSEN A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J]. Nature, 2004, 429(6 991): 542-545. |
49 | PERCIVAL L M E, WITT M L I, MATHER T A, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo-Ferrar Large Igneous Province[J]. Earth and Planetary Science Letters, 2015, 428: 267-280. |
50 | PYLE D M, MATHER T A. The importance of volcanic emissions for the global atmospheric mercury cycle[J]. Atmospheric Environment, 2003, 37(36): 5 115-5 124. |
51 | ZAMBARDI T, SONKE J E, TOUTAIN J P, et al. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 236-243. |
52 | BAGNATO E, AIUPPA A, PARELLO F, et al. New clues on the contribution of Earth’s volcanism to the global mercury cycle[J]. Bulletin of Volcanology, 2011, 73(5): 497-510. |
53 | WITT M L L, MATHER T A, PYLE D M, et al. Mercury and halogen emissions from masaya and telica volcanoes, Nicaragua[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B6).DOI:1029/2007JB005401 . |
54 | SHEN J, YIN R S, ALGEO T J, et al. Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis[J]. Nature Communications, 2022, 13(1): 1-8. |
55 | PUNEKAR J, KELLER G, KHOZYEM H M, et al. A multi-proxy approach to decode the end-Cretaceous mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 116-136. |
56 | PUNEKAR J, MATEO P, KELLER G, et al. Effects of deccan volcanism on paleoenvironment and planktic foraminifera: a global survey[M]// Volcanism, impacts, and mass extinctions: causes and effects. Geological Society of America, 2014. |
57 | SHEN J, ALGEO T J, PLANAVSKY N J, et al. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction[J]. Earth-Science Reviews, 2019, 195: 191-212. |
58 | SHEN J, FENG Q L, ALGEO T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy[J]. Earth and Planetary Science Letters, 2020, 543. DOI:10.1016/j.epsl.2020.116333 . |
59 | ALEGRET L, THOMAS E. Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(1/2): 59-83. |
60 | ZACHOS J, KROON D, BLOOM P, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 208: college station, TX[R]. Ocean Drilling Program, 2004. DOI:10.2973/odp.proc.ir.208.2004 . |
61 | LOROCH D, DEUTSCH A, BERNDT J, et al. The Cretaceous/Paleogene (K-Pg) boundary at the J Anomaly Ridge, Newfoundland (IODP expedition 342, hole U1403B)[J]. Meteoritics & Planetary Science, 2016, 51(7): 1 370-1 385. |
62 | ZACHOS J C, R?HL U, SCHELLENBERG S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5 728): 1 611-1 615. |
63 | ALEGRET L, THOMAS E, LOHMANN K C. End-Cretaceous marine mass extinction not caused by productivity collapse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 728-732. |
64 | ALVAREZ S A, GIBBS S J, BOWN P R, et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery[J]. Nature, 2019, 574(7 777): 242-245. |
65 | D'HONDT S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36: 295-317. |
66 | KROON D, ZACHOS J C, BLUM P, et al. Leg 208 synthesis: cenozoic climate cycles and excursions[J]. Leg 208 Scientific Party, 2007, 208: 1-55. |
67 | RENNE P R, SPRAIN C J, RICHARDS M A, et al. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact[J]. Science, 2015, 350(6 256): 76-78. |
68 | SCHOENE B, SAMPERTON K M, EDDY M P, et al. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction[J]. Science, 2015, 347(6 218): 182-184. |
69 | ZHAO Mengting, QIU Yudan, MA Mingming. A review on the hyperthermals from late Certaceous to early Paleogene[J]. Quaternary Sciences, 2022, 42(2): 512-528. |
69 | 赵梦婷, 邱煜丹, 马明明. 白垩纪晚期—古近纪早期热事件研究进展[J]. 第四纪研究, 2022, 42(2): 512-528. |
70 | BARNET J S K, LITTLER K, KROON D, et al. A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism[J]. Geology, 2018, 46(2): 147-150. |
71 | KELLER G, MATEO P, MONKENBUSCH J, et al. Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction[J]. Global and Planetary Change, 2020, 194. DOI: 10.1016/j.gloplacha.2020.103312 . |
72 | ZHANG L M, WANG C S, WIGNALL P B, et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46(3): 271-274. |
73 | LI S, GRASBY S E, ZHAO X D, et al. Mercury evidence of Deccan volcanism driving the Latest Maastrichtian Warming Event[J]. Geology, 2022, 50(10): 1 140-1 144. |
74 | DECONTO R M, GALEOTTI S, PAGANI M, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012, 484(7 392): 87-91. |
75 | DICKENS G R, CASTILLO M M, WALKER J C. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25(3): 259-262. |
76 | DICKENS G R, O’NEIL J R, REA D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971. |
77 | KURTZ A C, KUMP L R, ARTHUR M A, et al. Early Cenozoic decoupling of the global carbon and sulfur cycles[J]. Paleoceanography, 2003, 18(4). DOI:10.1029/2003PA000908 . |
/
〈 |
|
〉 |