综述与评述

典型中尺度数值预报模式参数化方案的综述与展望

  • 刘东海 ,
  • 黄静 ,
  • 刘娟 ,
  • 周扬 ,
  • 秦昆
展开
  • 1.武汉大学遥感信息工程学院,湖北 武汉 430079
    2.北京应用气象研究所,北京 100029
刘东海(2000-),男,山西偏关人,硕士研究生,主要从事时空大数据分析研究. E-mail: ldhwhdx@whu.edu.cn
秦昆(1972-),男,湖北随州人,教授,主要从事时空大数据分析研究. E-mail: qink@whu.edu.cn

收稿日期: 2022-11-18

  修回日期: 2023-01-08

  网络出版日期: 2023-04-18

基金资助

国家自然科学基金项目“全球尺度地理多元流的网络化挖掘及关联分析”(42171448)

Review and Prospect of Parameterization Schemes of Typical Mesoscale Numerical Prediction Models at Home and Abroad

  • Donghai LIU ,
  • Jing HUANG ,
  • Juan LIU ,
  • Yang ZHOU ,
  • Kun QIN
Expand
  • 1.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    2.Beijing Institute of Applied Meteorology, Beijing 100029, China
LIU Donghai (2000-), male, Pianguan County, Shanxi Province, Master student. Research areas include spatio temporal big data analysis. E-mail: ldhwhdx@whu.edu.cn
QIN Kun (1972-), male, Suizhou City, Hubei Province, Professor. Research areas include spatio temporal big data analysis. E-mail: qink@whu.edu.cn

Received date: 2022-11-18

  Revised date: 2023-01-08

  Online published: 2023-04-18

Supported by

the National Natural Science Foundation of China “Networked mining and association analysis of geographical multiple flows at a global scale”(42171448)

摘要

中尺度天气现象对人类的生产生活有重要影响,中尺度数值预报模式是进行数值天气预报的主要工具。受模式分辨率和对天气现象物理机制认识不足的限制,许多复杂天气过程只能用参数化方案来隐式表达,对参数化方案进行研究有助于推动中尺度数值预报模式的模拟和预报效果的不断优化。在探讨国内外典型中尺度数值预报模式特性的基础上,综述了积云对流参数化方案、云微物理参数化方案、边界层参数化方案、陆面过程参数化方案和辐射传输过程参数化方案的研究进展,比较了代表性参数化方案的理论基础和应用场景,发现对独立或组合参数化方案效果的对比试验和改进试验是该领域主要的研究范式。认为参数化方案未来将走向深入探讨各种天气现象的影响因素和物理机制,多要素、多尺度和多方案耦合,更加重视对“灰色区域”的模拟,应用选择更加多元化,并与机器学习技术融合的发展模式。

本文引用格式

刘东海 , 黄静 , 刘娟 , 周扬 , 秦昆 . 典型中尺度数值预报模式参数化方案的综述与展望[J]. 地球科学进展, 2023 , 38(4) : 349 -362 . DOI: 10.11867/j.issn.1001-8166.2023.005

Abstract

Mesoscale weather phenomena have a significant impact on human production and life. Mesoscale numerical prediction models are one of the main tools used for numerical weather prediction. Owing to the limitations of model resolution and insufficient understanding of the physical mechanisms of weather phenomena, many complex weather processes can only be implicitly expressed by parameterization schemes, the research of which is helpful in promoting the continuous optimization of the simulation and prediction effects of mesoscale numerical prediction models. Based on the characteristics of typical mesoscale numerical prediction models at home and abroad, the research status of cumulus convective, cloud microphysical, planetary boundary layer, land surface process, and radiation transfer process parameterization schemes, which are important according to the main forms of atmospheric motion, have been summarized. The theoretical basis and application scenarios of representative parameterization schemes are also compared in the present study. The main research paradigms in this field are comparative experiments that include the comparison of different scheme effects in simulating the same weather phenomenon, comparison of the same scheme effects in different weather scenarios, and optimization experiments on independent or combined schemes. In the future, the physical mechanisms of various weather phenomena and their influencing factors will be explored in depth, and parameterization schemes will be coupled at the levels of multiple elements, scales, and schemes. Subsequently, the simulation of the gray area will receive more attention, and the application options of parameterization schemes will be more diversified. Owing to the arrival of the big data era and the high demand for data analysis, parameterization schemes and machine learning will be developed to form a new mechanism driven by methods and data.

参考文献

1 CHEN Dandan, XU Yiqiang. Comparative study of mesoscale data under different terrain conditions of wind farms[J]. Shanghai Energy Conservation, 2022(4): 476-481.
1 陈丹丹, 徐以强. 中尺度数据在不同地形条件风电场下的研究[J]. 上海节能, 2022(4): 476-481.
2 CHENG Linsheng. The current status of mesoscale numerical model development and its application prospects[J]. Plateau Meteorology, 1999, 18(3): 350-360.
2 程麟生. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 1999, 18(3): 350-360.
3 ZHU Keyun, QIU Chongjian, CHENG Hua. An adjoint model with a mesoscale MM4 model[J]. Journal of Chengdu Institute of Meteorology, 2001, 16(2): 75-82.
3 朱克云, 邱崇践, 程华. 中尺度MM4模式及其伴随模式[J]. 成都信息工程学院学报, 2001, 16(2): 75-82.
4 BLACK T L. The new NMC mesoscale eta model: description and forecast examples[J]. Weather and Forecasting, 1994, 9(2): 265-278.
5 POWERS J G, KLEMP J B, SKAMAROCK W C, et al. The weather research and forecasting model: overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1 717-1 737.
6 XUE M, DROEGEMEIER K K, WONG V. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. part I: model dynamics and verification[J]. Meteorology and Atmospheric Physics, 2000, 75(3): 161-193.
7 XUE M, DROEGEMEIER K K, WONG V, et al. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76: 143-165.
8 ZHENG Fang, XU Xianbin, XIANG Dongdong, et al. GPU-based parallel rearches on RRTM module of GRAPES numerical prediction system[J]. Computer Science, 2012, 39(): 370-374.
8 郑芳, 许先斌, 向冬冬, 等. 基于GPU的GRAPES数值预报系统中RRTM模块的并行化研究[J]. 计算机科学, 2012, 39(): 370-374.
9 LIU Yubao, ZHOU Xiuji, HU Zhijin. A three dimensional elastic nested-grid meso-scale(β-γ) atmospheric model[J]. Acta Meteorologica Sinica, 1993, 51(3): 369-380.
9 刘玉宝, 周秀骥, 胡志晋. 三维弹性套网格中尺度(β-γ)大气模式[J]. 气象学报, 1993, 51(3): 369-380.
10 LI Ming, YANG Wenfeng, SHI Li, et al. Introduction of mesoscale model AREMS forecast system[J]. Journal of Shaanxi Meteorology, 2004(6): 11-13.
10 李明, 杨文峰, 史历, 等. 中尺度模式AREMS预报系统介绍[J]. 陕西气象, 2004(6): 11-13.
11 ARAKAWA A. The cumulus parameterization problem: past, present, and future[J]. Journal of Climate, 2004, 17(13): 2 493-2 525.
12 YAN Xi, ZHAO Jun. Review of the cumulus parameterization scheme in numerical weather prediction model[C]// The 35th annual meeting of Chinese meteorological society S1: disaster weather monitor, analysis, and prediction. Hefei, 2018: 1 913-1 919.
12 颜曦,赵军. 大气数值模式积云对流参数化方案综述[C]//第35届中国气象学会年会S1灾害天气监测、分析与预报. 合肥, 2018:1 913-1 919.
13 KUO H L. On formation and intensification of tropical cyclones through latent heat release by cumulus convection[J]. Journal of the Atmospheric Sciences, 1965, 22(1): 40-63.
14 KUO H L. Further studies of the parameterization of the influence of cumulus convection on large-scale flow[J]. Journal of the Atmospheric Sciences, 1974, 31(5): 1 232-1 240.
15 KUO Y H, ANTHES R A. Semiprognostic tests of Kuo-type cumulus parameterization schemes in an extratropical convective system[J]. Monthly Weather Review, 1984, 112(8): 1 498-1 509.
16 ARAKAWA A, SCHUBERT W H. Interaction of a cumulus cloud ensemble with the large-scale environment, part I[J]. Journal of the Atmospheric Sciences, 1974, 31(3): 674-701.
17 GRELL G A, DéVéNYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14). DOI:10.1029/2002GL015311 .
18 FRITSCH J M, CHAPPELL C F. Numerical prediction of convectively driven mesoscale pressure systems. part I: convective parameterization[J]. Journal of the Atmospheric Sciences, 1980, 37(8): 1 722-1 733.
19 KAIN J S, FRITSCH J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. Journal of the Atmospheric Sciences, 1990, 47(23): 2 784-2 802.
20 KAIN J S, FRITSCH J M. Convective parameterization for mesoscale models: the kain-fritsch scheme[M]// The representation of cumulus convection in numerical models. Boston, MA: American Meteorological Society, 1993: 165-170.
21 BETTS A K. A new convective adjustment scheme. part I: observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473): 677-691.
22 JANJI? Z I. The step-mountain ETa coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Monthly Weather Review, 1994, 122(5): 927-945.
23 WU Huaping, SHU Jiong, GU Ying, et al. The effects of different cumulus parameterization schemes in WRF on heavy rainfall in Hunan Province[J]. Journal of Tropical Meteorology, 2009, 25(2): 175-180.
23 伍华平, 束炯, 顾莹, 等. 暴雨模拟中积云对流参数化方案的对比试验[J]. 热带气象学报, 2009, 25(2): 175-180.
24 VAIDYA S S, SINGH S S. Applying the betts-miller-janjic scheme of convection in prediction of the Indian monsoon[J]. Weather and Forecasting, 2000, 15(3): 349-356.
25 YU E T, WANG H J, GAO Y Q, et al. Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China[J]. Acta Meteorologica Sinica, 2011, 25(5): 581-592.
26 ZHENG Y, ALAPATY K, HERWEHE J A, et al. Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) model with an updated kain-fritsch scheme[J]. Monthly Weather Review, 2016, 144(3): 833-860.
27 KAIN J S. The kain-fritsch convective parameterization: an update[J]. Journal of Applied Meteorology, 2004, 43(1): 170-181.
28 HAN J, WANG W G, KWON Y C, et al. Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness[J]. Weather and Forecasting, 2017, 32(5): 2 005-2 017.
29 LIU Xiaochen, LIU Qijun. Review on parameterization schemes of aerosol microphysical processes in cloud models[J]. Meteorological, 2006, 32(6): 3-12.
29 刘校辰, 刘奇俊. 云模式中气溶胶物理过程参数化方案研究概述[J]. 气象, 2006, 32(6): 3-12.
30 MA Leiming, BAO Xuwei. Research progress on physical parameterization schemes in numerical weather prediction models[J]. Advances in Earth Science, 2017, 32(7): 679-687.
30 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
31 LI Yan, ZHAO Jun. Development of cloud microphysical parameterization schemes in numerical weather forecasting[C]//The 34th annual meeting of the chinese meteorological society. Zhengzhou, Henan, 2017: 134-137.
31 李琰, 赵军. 云微物理参数化方案在数值天气预报中的发展[C]//第34届中国气象学会年会.河南郑州, 2017: 134-137.
32 XU Guang. The influence of the revision of the cutoff parameters of aqueous substances on the numerical simulation based on Lin scheme[C]// The 33th annual meeting of the chinese meteorological society. Xi’an, Shaanxi, 2016.
32 许广. 基于Lin方案水成物截断参数修订对数值模拟的影响[C]//第33届中国气象学会年会. 陕西西安, 2016.
33 LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1 065-1 092.
34 HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004, 132(1): 103-120.
35 ZHU Geli, LIN Wantao, CAO Yanhua. Numerical simulation of a rainstorm event over South China by using various cloud microphysics parameterization schemes in WRF model and its performance analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 513-523.
35 朱格利, 林万涛, 曹艳华. 用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析[J]. 大气科学, 2014, 38(3): 513-523.
36 SUN Ke. Research on rainfall simulation of WRF model with different physical process scheme[D]. Beijing: North China Electric Power University, 2011.
36 孙科. WRF模式物理过程参数化方案对降水模拟影响研究[D]. 北京: 华北电力大学(北京), 2011.
37 HUANG Haibo, CHEN Chunyan, ZHU Wenna. Impacts of different cloud microphysical processes and horizontal resolutions of WRF model on precipitation forecast effect[J]. Meteorological Science and Technology, 2011, 39(5): 529-536.
37 黄海波, 陈春艳, 朱雯娜. WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J]. 气象科技, 2011, 39(5): 529-536.
38 BAO J W, MICHELSON S A, GRELL E D. Microphysical process comparison of three microphysics parameterization schemes in the WRF model for an idealized squall-line case study[J]. Monthly Weather Review, 2019, 147(9): 3 093-3 120.
39 YIN Jinfang, WANG Donghai, ZHAI Guoqing. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China[J]. Advances in Earth Science, 2014, 29(2): 238-249.
39 尹金方, 王东海, 翟国庆. 区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J]. 地球科学进展, 2014, 29(2): 238-249.
40 CAI Xiangning. PBL parameterization and its application in mesoscale numerical model[D]. Nanjing: Nanjing Institute of Meteorology, 2004.
40 蔡芗宁. 边界层参数化及其在中尺度数值模式中的应用[D]. 南京: 南京气象学院, 2004.
41 ZHU Rong, XU Dahai. Multi-scale turbulent planetary boundary layer parameterization in mesoscale numerical simulation[J]. Quarterly Journal of Applied Meteorology, 2004, 15(5): 543-555.
41 朱蓉, 徐大海. 中尺度数值模拟中的边界层多尺度湍流参数化方案[J]. 应用气象学报, 2004, 15(5): 543-555.
42 DEARDORFF J W. Theoretical expression for the countergradient vertical heat flux[J]. Journal of Geophysical Research, 1972, 77(30): 5 900-5 904.
43 HONG S Y, PAN H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 1996, 124(10): 2 322-2 339.
44 MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4). DOI: 10.1029/RG020i004p00851 .
45 JANJI? Z I. The step-mountain coordinate: physical package[J]. Monthly Weather Review, 1990, 118(7): 1 429-1 443.
46 JANJI? Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model[EB/OL]. 2001.[2022-11-17]. .
47 BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890.
48 HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341.
49 ZHANG Bihui, LIU Shuhua, MA Yanjun. The effect of MYJ and YSU schemes on the simulation of boundary layer meteorological factors of WRF[J]. Chinese Journal of Geophysics, 2012, 55(7): 2 239-2 248.
49 张碧辉, 刘树华, 马雁军. MYJ和YSU方案对WRF边界层气象要素模拟的影响[J]. 地球物理学报, 2012, 55(7): 2 239-2 248.
50 PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 383-1 395.
51 ZHANG Wanying, GUO Lixia. Boundary layer parameterization experiment for numerical simulation of heavy rain in eastern Hebei province[C]// The annual meeting of the chinese meteorological society. Guangzhou, 2007.
51 张婉莹, 郭丽霞. 冀东暴雨数值模拟的边界层参数化试验[C]//中国气象学会年会. 广州, 2007.
52 BURK S D, THOMPSON W T. A vertically nested regional numerical weather prediction model with second-order closure physics[J]. Monthly Weather Review, 1989, 117(11): 2 305-2 324.
53 XIAO Yuhua, HE Guangbi, GU Qingyuan, et al. Impact of boundary layer parameterization schemes on numerical simulation of different property precipitation[J]. Plateau Meteorology, 2010, 29(2): 331-339.
53 肖玉华, 何光碧, 顾清源, 等. 边界层参数化方案对不同性质降水模拟的影响[J]. 高原气象, 2010, 29(2): 331-339.
54 CAI Xiangning, SHOU Shaowen, ZHONG Qing. Impact of different boundary layer parameterization schemes on the numerical simulation for a rainstorm[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(3): 364-370.
54 蔡芗宁, 寿绍文, 钟青. 边界层参数化方案对暴雨数值模拟的影响[J]. 南京气象学院学报, 2006, 29(3): 364-370.
55 WANG Ying, ZHANG Lei, HU Ju, et al. Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain[J]. Plateau Meteorology, 2010, 29(6): 1 397-1 407.
55 王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1 397-1 407.
56 COHEN A E, CAVALLO S M, CONIGLIO M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments[J]. Weather and Forecasting, 2015, 30(3): 591-612.
57 JIANG Yong, ZHAO Ming, TANG Jianping, et al. Application of a new boundary layer parameterization scheme in MM5 and comparison of different boundary layer parameterization[J]. Scientia Meteorologica Sinica, 2002, 22(3): 253-263.
57 江勇, 赵鸣, 汤剑平, 等. MM5中新边界层方案的引入和对比试验[J]. 气象科学, 2002, 22(3): 253-263.
58 CHENYANG Ruixue, LUO Yali. Analysis of the influence of different parameterization schemes representing the planetary boundary layer and land surface processes on convection-permitting simulations of a heavy rainfall event along Mei-yu front[J]. Journal of Tropical Meteorology, 2016, 32(5): 656-667.
58 陈杨瑞雪, 罗亚丽. 不同边界层参数化方案和陆面过程参数化方案对一次梅雨锋暴雨显式对流模拟的影响分析[J]. 热带气象学报, 2016, 32(5): 656-667.
59 TU Nini, HE Guangbi, ZHANG Lihong. Numerical studies of different planet boundary layer parameterization and land surface model parameterization[J]. Plateau and Mountain Meteorology Research, 2012, 32(3): 1-8.
59 屠妮妮, 何光碧, 张利红. 不同边界层和陆面过程参数化方案对比分析[J]. 高原山地气象研究, 2012, 32(3): 1-8.
60 ZOU Haibo, ZHANG Shuwen, ZHANG Weidong, et al. Effects of different land-surface processes and planetary boundary layer schemes in WRF on the simulation of lake-effect precipitation over Poyang Lake[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(1): 72-81.
60 邹海波, 张述文, 张卫东, 等. WRF模式陆面过程和边界层方案对鄱阳湖湖效应降水模拟的影响[J]. 兰州大学学报(自然科学版), 2021, 57(1): 72-81.
61 BUDYKO M I. The heat balance of the Earth’s surface[J]. Soviet Geography, 1961, 2(4): 3-13.
62 DICKINSON R E. The force-restore model for surface temperatures and its generalizations[J]. Journal of Climate, 1988, 1(11): 1 086-1 097.
63 SELLERS P J, MINTZ Y, SUD Y C, et al. A Simple Biosphere model (SiB) for use within general circulation models[J]. Journal of the Atmospheric Sciences, 1986, 43(6): 505-531.
64 SELLERS P J, RANDALL D A, COLLATZ G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. part I: model formulation[J]. Journal of Climate, 1996, 9(4): 676-705.
65 SELLERS P J, TUCKER C J, COLLATZ G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. part II: the generation of global fields of terrestrial biophysical parameters from satellite data[J]. Journal of Climate, 1996, 9(4): 706-737.
66 RANDALL D A, DAZLICH D A, ZHANG C, et al. A revised land surface parameterization (SiB2) for GCMS. part III: the greening of the Colorado state university general circulation model[J]. Journal of Climate, 1996, 9(4): 738-763.
67 KHVOROSTYANOV D, MENUT L, DUPONT J, et al. The role of WRF land surface schemes on weather simulations in Paris area[C]// Proceedings of ISARS 2010 conference. Guyancourt, France, 2010.
68 CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. part I: model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569-585.
69 DUDHIA J. A multi-layer soil temperature model for MM5[C]// Preprints, the sixth PSU/NCAR mesoscale model users’ workshop. National Center for Atmospheric Research Boulder, CO, USA, 1996: 22-24.
70 GILLIAM R, PLEIM J, XIU A J. Implementation of the Pleim-Xiu land surface model and asymmetric convective model in the WRF model[Z]. 2007.
71 WANG Dashan, WU Jie, JIANG Xin, et al. Simulated response of warming to Southeast Asian deforestation: insights from WRF simulations using three land surface models[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 992-1 001.
71 王大山, 武婕, 江鑫, 等. 基于三种WRF陆面过程方案的东南亚毁林增温响应研究[J]. 大气科学学报, 2020, 43(6): 992-1 001.
72 LAI Xiliu, WANG Ying, YANG Xueling, et al. Meteorological characteristics in Lanzhou New District simulated by WRF with different land surface model parameterizations[J]. Journal of Lanzhou University (Natural Sciences), 2017, 53(3): 329-340.
72 赖锡柳, 王颖, 杨雪玲, 等. WRF模式不同陆面过程方案模拟兰州新区低空气象场特征[J]. 兰州大学学报(自然科学版), 2017, 53(3): 329-340.
73 XIE Fei, HE Hongrang, ZHANG Yun. Evaluation of simulation results for different parameterization schemes of land process[J]. Journal of Anhui Agricultural Sciences, 2016, 44(9): 210-215, 220.
73 谢菲, 何宏让, 张云. 不同陆面过程参数化方案模拟效果评估[J]. 安徽农业科学, 2016, 44(9): 210-215, 220.
74 MA Wei. Numerical simulation of cooling process based on different land surface parameterization schemes[J]. Inner Mongolia Science Technology & Economy, 2019(8): 45-47.
74 马伟. 基于不同陆面参数化方案的降温过程数值模拟[J]. 内蒙古科技与经济, 2019(8): 45-47.
75 LIU Shuhua, LI Xinrong, LIU Lichao, et al. Study of land-surface processes parameterizations model[J]. Journal of Desert Research, 2001, 21(3): 303-311.
75 刘树华, 李新荣, 刘立超, 等. 陆面过程参数化模式的研究[J]. 中国沙漠, 2001, 21(3): 303-311.
76 ROSENZWEIG C, ABRAMOPOULOS F. Land-surface model development for the GISS GCM[J]. Journal of Climate, 1997, 10(8): 2 040-2 054.
77 WANG Man. Study on radiation parameterization schemes in meso-scale model[D]. Nanjing: Nanjing Institute of Meteorology, 2004.
77 王曼. 中尺度模式中的辐射参数化方案研究[D]. 南京: 南京气象学院, 2004.
78 MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16 663-16 682.
79 IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models[J]. Journal of Geophysical Research, 2008, 113(D13). DOI:10.1029/2008JD009944 .
80 SU Tao, MIAO Junfeng, WANG Yuhui. Impact of radiative transfer parameterizations on simulated sea breeze thunderstorm over the Hainan Island[J]. Chinese Journal of Geophysics, 2017, 60(8): 3 023-3 040.
80 苏涛, 苗峻峰, 王语卉. 辐射参数化对海南岛海风雷暴结构模拟的影响[J]. 地球物理学报, 2017, 60(8): 3 023-3 040.
81 PINCUS R, BARKER H W, MORCRETTE J J. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D13). DOI: 10.1029/2002JD003322 .
82 CHEN Chunyan, HUANG Haibo. Influence of different radiation parameterization schemes of WRF model on predicting extreme low temperature events[J]. Arid Zone Research, 2016, 33(4): 718-723.
82 陈春艳, 黄海波. WRF模式辐射方案对极端低温天气预报的影响[J]. 干旱区研究, 2016, 33(4): 718-723.
83 CHOU M, SUáREZ M. A solar radiation parameterization for atmospheric studies. volume 15[Z]. Work of the US Government Public Use Permitted, 1999.
84 ZHANG Rucai, FU Jiwei, WANG Liang, et al. Effects of different radiation schemes on severe convective weather processes[C]// The annual meeting of chinese meteorological society in 2007. Guangzhou, 2007: 1 676-1 686.
84 张入财, 付伟基, 王亮, 等. 不同辐射方案对强对流天气过程的影响[C]//中国气象学会2007年年会. 广州, 2007: 1 676-1 686.
85 FELS S B, DANIEL S M. The simplified exchange approximation: a new method for radiative transfer calculations[J]. Journal of the Atmospheric Sciences, 1975, 32(7): 1 475-1 488.
86 SCHWARZKOPF M D, FELS S B. The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes[J]. Journal of Geophysical Research, 1991, 96(D5). DOI:10.1029/89JD01598 .
87 SCHWARZKOPF M D, FELS S B. Improvements to the algorithm for computing CO2 transmissivities and cooling rates[J]. Journal of Geophysical Research: Atmospheres, 1985, 90(D6): 10 541-10 550.
88 ROBERTS R E, SELBY J E, BIBERMAN L M. Infrared continuum absorption by atmospheric water vapor in the 8-12-microm window[J]. Applied Optics, 1976, 15(9): 2 085-2 090.
89 RODGERS C D. Some extensions and applications of the new random model for molecular band transmission[J]. Quarterly Journal of the Royal Meteorological Society, 1968, 94(399): 99-102.
90 LACIS A A, HANSEN J. A parameterization for the absorption of solar radiation in the Earth’s atmosphere[J]. Journal of the Atmospheric Sciences, 1974, 31(1): 118-133.
91 COLLINS W D, RASCH P J, BOVILLE B A, et al. Description of the NCAR community atmosphere model (CAM 3.0)[J]. NCAR Technology Note NCAR/TN-464+ STR, 2004, 226: 1 326-1 334.
92 RAMANATHAN V, DOWNEY P. A nonisothermal emissivity and absorptivity formulation for water vapor[J]. Journal of Geophysical Research, 1986, 91(D8): 8 649-8 666.
93 KIEHL J T, BRIEGLEB B P. A new parameterization of the absorptance due to the 15-μm band system of carbon dioxide[J]. Journal of Geophysical Research, 1991, 96(D5): 9 013-9 019.
94 RAMANATHAN V, DICKINSON R E. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system[J]. Journal of Atmospheric Sciences, 1979, 36(6): 1 084-1 104.
95 COLLINS W D, HACKNEY J K, EDWARDS D P. An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model[J]. Journal of Geophysical Research, 2002, 107(D22): ACL 17-1-ACL 17-20.
96 BERGER A. Long-term variations of daily insolation and quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12): 2 362-2 367.
97 LEAN J, BEER J, BRADLEY R. Reconstruction of solar irradiance since 1610: implications for climate change[J]. Geophysical Research Letters, 1995, 22(23): 3 195-3 198.
98 COLLINS W D. A global signature of enhanced shortwave absorption by clouds[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D24): 31 669-31 679.
99 JOSEPH J H, WISCOMBE W J, WEINMAN J A. The delta-Eddington approximation for radiative flux transfer[J]. Journal of the Atmospheric Sciences, 1976, 33(12): 2 452-2 459.
100 COAKLEY J A, CESS R D, YUREVICH F B. The effect of tropospheric aerosols on the Earth’s radiation budget: a parameterization for climate models[J]. Journal of the Atmospheric Sciences, 1983, 40(1): 116-138.
101 BRIEGLEB B P. Delta-Eddington approximation for solar radiation in the NCAR community climate model[J]. Journal of Geophysical Research, 1992, 97(D7): 7 603-7 612.
102 JIA Siyu, BAO Yunxuan, YUAN Chengsong, et al. Influence of different radiation parameterization schemes on numerical simulations of heavy fog events on expressways in Jiangsu Province[J]. Meteorological Science and Technology, 2018, 46(5): 932-942.
102 贾思雨, 包云轩, 袁成松, 等. 不同辐射参数化方案对南京地区大雾过程数值模拟的影响[J]. 气象科技, 2018, 46(5): 932-942.
103 KESSLER E. On the distribution and continuity of water substance in atmospheric circulations[M]// On the distribution and continuity of water substance in atmospheric circulations. Boston, MA: American Meteorological Society, 1969: 1-84.
104 MANABE S, SMAGORINSKY J, STRICKLER R F. Simulated climatology of a general circulation model with a hydrologic cycle[J]. Monthly Weather Review, 1965, 93(12): 769-798.
105 BETTS A K, MILLER M J. A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473): 693-709.
106 GUO Jianping, LIU Boming, GUO Xiaoran, et al. Research progress on new applications of networked observation of wind profile radar[J]. Advances in Meteorological Science and Technology, 2021, 11(2): 5-12, 51.
106 郭建平, 刘博铭, 郭晓冉, 等. 风廓线雷达组网观测新型应用研究进展[J]. 气象科技进展, 2021, 11(2): 5-12, 51.
107 MU Hongqiang, XIA Jun, HU Yuhui. Status quo of studying parametrization of land surface process[J]. Yangtze River, 2000, 31(7): 10-12, 48.
107 穆宏强, 夏军, 胡玉惠. 陆面过程参数化方案研究综述[J]. 人民长江, 2000, 31(7): 10-12, 48.
108 NIU Guoyao, HONG Zhongxiang, SUN Shufen, et al. Status and developmental trendsof land surface processes study[J]. Advences in Earth Science, 1997, 12(1): 20-25.
108 牛国跃, 洪钟祥, 孙菽芬. 陆面过程研究的现状与发展趋势[J]. 地球科学进展, 1997, 12(1): 20-25.
109 SUN Wenqi, LI Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018, 38(3): 11-19.
109 孙文奇, 李昌义. 数值模式中的大气边界层参数化方案综述[J]. 海洋气象学报, 2018, 38(3): 11-19.
110 HUANG Jing, ZHANG Qiang. Mesoscale atmospheric numerical simulation and its progress[J]. Arid Zone Research, 2012, 29(2): 273-283.
110 黄菁, 张强. 中尺度大气数值模拟及其进展[J]. 干旱区研究, 2012, 29(2): 273-283.
111 ZHOU Wenyan, GUO Pinwen, LUO Yong. Review of advances in parameterization schemes for short-wave canopy radiative transfer in land surface process models[J]. Meteorological Science and Technology, 2008, 36(3): 257-261.
111 周文艳, 郭品文, 罗勇. 陆面过程模式中植被冠层短波辐射传输参数化方案研究进展[J]. 气象科技, 2008, 36(3): 257-261.
112 WANG Rui. The effects of convection representation across the “gray zone” in multigrid nesting simulations of extreme precipitation over Shanghai[D]. Shanghai: East China Normal University, 2020.
112 王瑞. 积云对流基于嵌套跨越“灰色区域”对上海暴雨模拟的影响[D]. 上海: 华东师范大学, 2020.
113 LIU Mengjuan, ZHANG Xu, CHEN Baode. Assessment of the suitability of planetary boundary layer schemes at “grey zone” resolutions[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 52-69.
113 刘梦娟, 张旭, 陈葆德. 边界层参数化方案在“灰色区域”尺度下的适用性评估[J]. 大气科学, 2018, 42(1): 52-69.
114 GILBERT R C, RICHMAN M B, TRAFALIS T B, et al. Machine learning methods for data assimilation[M]// Intelligent engineering systems through artificial neural networks, volume 20. ASMEPress, 2010.
115 WU P, CHANG X T, YUAN W Y, et al. Fast Data Assimilation (FDA): data assimilation by machine learning for faster optimize model state[J]. Journal of Computational Science, 2021, 51. DOI:10.1016/j.jocs.2021.101323 .
116 ARCUCCI R, ZHU J C, HU S, et al. Deep data assimilation: integrating deep learning with data assimilation[J]. Applied Sciences, 2021, 11(3). DOI:10.3390/app11031114 .
117 WANG Shengchun. Research on meteorological intelligent algorithm based on machine learning[D]. Changsha: Hunan Normal University, 2020.
117 王胜春. 基于机器学习的气象智能算法研究[D]. 长沙: 湖南师范大学, 2020.
118 ZHOU Ganning. A study on cloud phase detection algorithm based on multispectral threshold and machine learning methods[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.
118 周甘凝. 基于多光谱阈值与机器学习的云相态识别算法[D]. 南京: 南京信息工程大学, 2022.
119 LI Chunhan. Spatial scale adaptive parameterization scheme for aerosol activation and nucleation[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.
119 李春涵. 水平空间尺度自适应的气溶胶活化、核化参数化方案[D]. 南京: 南京信息工程大学, 2022.
120 HU Xiaoyu. Cloud detection methods for millimeter-wavelength radar based on computer vision[D]. Lanzhou: Lanzhou University, 2022.
120 胡晓宇. 基于计算机视觉的毫米波雷达云探测方法研究[D]. 兰州: 兰州大学, 2022.
121 LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166.
122 GAO Sinan. Affecting factors and mechanisms of entrainment-mixing process in stratocumulus clouds[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.
122 高思楠. 层积云中夹卷混合过程的影响因子及作用机制[D]. 南京: 南京信息工程大学, 2022.
123 GENTINE P, PRITCHARD M, RASP S, et al. Could machine learning break the convection parameterization deadlock?[J]. Geophysical Research Letters, 2018, 45(11): 5 742-5 751.
124 BELOCHITSKI A, BINEV P, DEVORE R, et al. Tree approximation of the long wave radiation parameterization in the NCAR CAM global climate model[J]. Journal of Computational and Applied Mathematics, 2011, 236(4): 447-460.
125 ZHAO Lin’an. Estimation of the surface-layer atmospheric optical turbulence intensity based on machine learning and WRF model[D]. Xi’an: Xidian University, 2019.
125 赵林安. 基于机器学习和WRF模式的近地大气光学湍流强度估算[D]. 西安: 西安电子科技大学, 2019.
126 TRIPATHI S, SRINIVAS V V, NANJUNDIAH R S. Downscaling of precipitation for climate change scenarios: a support vector machine approach[J]. Journal of Hydrology, 2006, 330(3/4): 621-640.
127 KIM H, HAM Y G, JOO Y S, et al. Deep learning for bias correction of MJO prediction[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-23406-3 .
128 DU Zhitao, JIANG Mingbo, DU Xiaoyong, et al. Application status and prospect of machine learning in meteorology[J]. Meteorological Science and Technology, 2021, 49(6): 930-941.
128 杜智涛, 姜明波, 杜晓勇, 等. 机器学习在气象领域的应用现状与展望[J]. 气象科技, 2021, 49(6): 930-941.
129 HAN Jiarui, ZHANG Pingwen, LI Haochen, et al. The present and future of artificial intelligence in the meteorological field: interview with academician Zhang Pingwen and key team members[J]. Advances in Meteorological Science and Technology, 2021, 11(3): 11-13.
129 韩佳芮, 张平文, 李昊辰, 等. 气象领域人工智能的现在与未来——张平文院士及团队骨干访谈录[J]. 气象科技进展, 2021, 11(3): 11-13.
130 LIU Weijia. Construction and evaluation of cloud-property based solar radiation short-term forecast systems[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.
130 刘唯佳. 基于云参量的太阳辐射短时临近预报模型的构建及预报评估[D]. 南京: 南京信息工程大学, 2021.
131 YANG Shuxian, LING Fenghua, YING Wushan, et al. A brief overview of the application of artificial intelligence to climate prediction[J]. Transaction of Atmospheric Sciences, 2022, 45(5): 641-659.
131 杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45(5): 641-659.
132 WU Can, DAI Yang, HE Xiaohuan, et al. International situation analysis of artificial intelligence scientific research in meteorological and atmospheric sciences[J]. Policy & Scientific Consult, 2021(11): 1-5.
132 吴灿, 戴洋, 何晓欢, 等. 气象和大气科学领域人工智能科学研究的国际态势分析[J]. 科学咨询(教育科研), 2021(11): 1-5.
文章导航

/