湖泊沉积脱-A-三萜类化合物在环境重建中的研究进展与展望
收稿日期: 2022-03-08
修回日期: 2022-08-23
网络出版日期: 2023-03-21
基金资助
国家自然科学基金面上项目“乌梁素湖沉积物中脱-A-三萜类的结构、成因及其生态环境指示意义”(41877332)
Research Advances and Prospects of des-A-triterpenoids in Environmental Reconstruction of Lake Environments
Received date: 2022-03-08
Revised date: 2022-08-23
Online published: 2023-03-21
Supported by
the National Natural Science Foundation of China “Structure, sources, and ecological significance of des-A-triterpenoids in sediments from Lake Wuliangsu”(41877332)
脱-A-三萜类化合物可示踪特定的生源信息,近年来在南美、东非和欧洲湖泊普遍检出并应用于环境重建。其至今未在中国现代湖泊沉积中被检出,因此中国在这方面的相关研究还相对滞后。基于此,通过梳理湖泊沉积脱-A-三萜类化合物的研究进展,系统总结了其结构特征、鉴定方法、生源信息、环境重建的原理及应用案例。然后,首次报道了中国近现代湖泊沉积物中脱-A-三萜类化合物的检出,其中乌梁素海以脱-A-奥利二烯为主,而鄱阳湖以奥利烷和乌散烷型的单烯以及脱-A-羽扇烷为主。最后,评估了中国湖泊沉积的脱-A-三萜化合物的应用潜力,并指出了未来研究的方向:结构鉴定手段的改进,分离纯化技术的开发,中国湖泊数据库的建立以及降解机制的解析等。
关键词: 脱-A-三萜类化合物; 湖泊; 生物标志物; 生源信息; 环境重建
赵青峰 , 孙大洋 , 何毓新 . 湖泊沉积脱-A-三萜类化合物在环境重建中的研究进展与展望[J]. 地球科学进展, 2023 , 38(3) : 256 -269 . DOI: 10.11867/j.issn.1001-8166.2022.057
Des-A-triterpenoids, diagenetic products of pentacyclic triterpenoids from A-ring degradation, have great potential for tracking specific biological sources in the environment. Although des-A-triterpenoids with lupane, oleanane, arborane, and ursane carbon skeleton structures were presumed to be indicative of terrestrial vascular angiosperms, recent studies have also identified other sources of des-A-triterpenoids in lakes and peatlands, such as algae and aerobic bacteria. Therefore, des-A-triterpenoids are valuable in paleoclimatic and paleoenvironmental reconstructions from the perspectives of specific sources and microbial activities. des-A-triterpenoids could be more useful for source identification than n-alkanes and n-fatty acids, considering that n-alkanes and n-fatty acids have multiple and complex sources. In recent decades, des-A-triterpenoids have been successfully applied in paleoenvironmental reconstructions of lakes from East Africa, South America, and Europe. In China, des-A-triterpenoids have been observed and identified in petroleum, coal, and recent peatland deposits, but no des-A-triterpenoids have been detected in modern lake environments. Therefore, we systematically reviewed the configuration structures, biosynthetic pathways, biological sources, and paleoenvironmental applications of des-A-triterpenoids in lake environments. This review describes a practical methodology for identifying des-A-triterpenoids. In addition, we reported the occurrence of des-A-triterpenoids with different configuration structures and distribution patterns in lakes Wuliangsu and Poyang. For instance, di-unsaturated des-A-triterpenes with oleanane configurations were observed in eight of 21 surface sediments from Lake Wuliangsu. Alternatively, des-A-lupane and mono-unsaturated des-A-triterpenes with oleanane and ursane configurations were observed in samples from a sedimentary core collected from Lake Poyang at a depth of about 3 m. Our findings demonstrate that des-A-triterpenoids have great potential in and challenge paleoenvironmental and biogeochemical reconstructions of Chinese lakes. At the end of the review, we propose further directions and breakthroughs for this research area, such as improving analyzing protocols and technology, identification of the exact biological sources under a specific geological background of lakes, disentanglement of the mechanism of triterpenoid degradation, and application of environmental reconstruction in des-A-triterpenoid research.
1 | YANG Guishan, MA Ronghua, ZHANG Lu, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810. |
1 | 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810. |
2 | FAN Chengxin, LIU Min, WANG Shengrui, et al. Research progress and prospect of sediment environment and pollution control in China in recent 20 years[J]. Advances in Earth Science, 2021, 36(4): 346-374. |
2 | 范成新, 刘敏, 王圣瑞, 等. 近20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374. |
3 | SHEN Ji. Progress and prospect of palaeolimnology research in China[J]. Journal of Lake Sciences, 2009, 21(3): 307-313. |
3 | 沈吉. 湖泊沉积研究的历史进展与展望[J]. 湖泊科学, 2009, 21(3): 307-313. |
4 | COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185. |
5 | MAROTTA H, DUARTE C M, SOBEK S, et al. Large CO2 disequilibria in tropical lakes[J]. Global Biogeochemical Cycles, 2009, 23(4). DOI:10.1029/2008GB003434 . |
6 | PETERS K, WALTERS C, MOLDOWAN J M. The biomarker guide, biomarkers and isotopes in petroleum exploration and Earth history[M]. New York: Cambridge University Press, 2005. |
7 | EGLINTON T I, EGLINTON G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 1-16. |
8 | CASTA?EDA I S, SCHOUTEN S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21/22): 2 851-2 891. |
9 | XIE S C, YAO T D, KANG S C, et al. Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate[J]. Organic Geochemistry, 2000, 31(1): 15-23. |
10 | KILLOPS S D, FREWIN N L. Triterpenoid diagenesis and cuticular preservation[J]. Organic Geochemistry, 1994, 21(12): 1 193-1 209. |
11 | LANGENHEIM J H. Higher plant terpenoids: a phytocentric overview of their ecological roles[J]. Journal of Chemical Ecology, 1994, 20(6): 1 223-1 280. |
12 | VERSTEEGH G J M, SCHEFU? E, DUPONT L, et al. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems[J]. Geochimica et Cosmochimica Acta, 2004, 68(3): 411-422. |
13 | KOCH B P, RULLK?TTER J, LARA R J. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil[J]. Wetlands Ecology and Management, 2003, 11(4): 257-263. |
14 | BOOT C S, ETTWEIN V J, MASLIN M A, et al. A 35, 000 year record of terrigenous and marine lipids in Amazon Fan sediments[J]. Organic Geochemistry, 2006, 37(2): 208-219. |
15 | DUAN H Q, TAKAISHI Y, MOMOTA H, et al. Triterpenoids from Tripterygium wilfordii [J]. Phytochemistry, 2000, 53(7): 805-810. |
16 | CORBET B, ALBRECHT P, OURISSON G. Photochemical or photomimetic fossil triterpenoids in sediments and petroleum[J]. Journal of the American Chemical Society, 1980, 102(3): 1 171-1 173. |
17 | SIMONEIT B R T, XU Y P, NETO R R, et al. Photochemical alteration of 3-oxygenated triterpenoids: implications for the origin of 3,4-seco-triterpenoids in sediments[J]. Chemosphere, 2009, 74(4): 543-550. |
18 | TRENDEL J M, LOHMANN F, KINTZINGER J P, et al. Identification of des-A-triterpenoid hydrocarbons occurring in surface sediments[J]. Tetrahedron, 1989, 45(14): 4 457-4 470. |
19 | JAFFé R, ELISMé T, CABRERA A C. Organic geochemistry of seasonally flooded rain forest soils: molecular composition and early diagenesis of lipid components[J]. Organic Geochemistry, 1996, 25(1/2): 9-17. |
20 | CHAFFEE A L, STRACHAN M G, JOHNS R B. Polycyclic aromatic hydrocarbons in Australian coals II. novel tetracyclic components from Victorian brown coal[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2 037-2 043. |
21 | de las HERAS F X, GRIMALT J O, ALBAIGéS J. Novel c-ring cleaved triterpenoid-derived aromatic hydrocarbons in Tertiary brown coals[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3 379-3 385. |
22 | SHI Jiyang, XIANG Mingju, HONG Ziqing, et al. Source and evolution of de-A-lupenes and some pentacyclic triterpanoids[J]. Acta Sedimentologica Sinica, 1991, 9(): 26-33. |
22 | 史继扬, 向明菊, 洪紫青, 等. 五环三萜烷的物源和演化[J]. 沉积学报, 1991, 9(): 26-33. |
23 | SAMUEL O J, KILDAHL-ANDERSEN G, NYTOFT H P, et al. Novel tricyclic and tetracyclic terpanes in Tertiary deltaic oils: structural identification, origin and application to petroleum correlation[J]. Organic Geochemistry, 2010, 41(12): 1 326-1 337. |
24 | MA N, HOU D J, SHI H S. Novel tetracyclic terpanes in crude oils and source rock extracts in Pearl River Mouth Basin and their geological significance[J]. Journal of Earth Science, 2014, 25(4): 713-718. |
25 | RUDRA A, DUTTA S, RAJU S V. The Paleogene vegetation and petroleum system in the tropics: a biomarker approach[J]. Marine and Petroleum Geology, 2017, 86: 38-51. |
26 | XIAO H, WANG T G, LI M J, et al. Occurrence and distribution of unusual tri- and tetracyclic terpanes and their geochemical significance in some Paleogene oils from China[J]. Energy & Fuels, 2018, 32(7): 7 393-7 403. |
27 | MéJANELLE L, RIVIèRE B, PINTURIER L, et al. Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 142: 109-124. |
28 | XU Y P, MEAD R N, JAFFé R. A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida Bay[J]. Hydrobiologia, 2006, 569(1): 179-192. |
29 | HE D, SIMONEIT B R T, CLOUTIER J B, et al. Early diagenesis of triterpenoids derived from mangroves in a subtropical estuary[J]. Organic Geochemistry, 2018, 125: 196-211. |
30 | DUAN Y, MA L H. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet Plateau, China)[J]. Organic Geochemistry, 2001, 32(12): 1 429-1 442. |
31 | HUANG X Y, XUE J T, WANG X X, et al. Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu peatland, central China[J]. Geochimica et Cosmochimica Acta, 2013, 123: 106-119. |
32 | ZHENG Y H, ZHOU W J, ZHAO L, et al. Compositions of aliphatic des-A-triterpenes in the Hani peat deposit, Northeast China and its biological significance[J]. Chinese Science Bulletin, 2010, 55(21): 2 275-2 281. |
33 | HUANG X Y, XIE S C, ZHANG C L, et al. Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, southern China[J]. Organic Geochemistry, 2008, 39(12): 1 765-1 771. |
34 | JAFFé R, HAUSMANN K B. Origin and early diagenesis of arborinone/isoarborinol in sediments of a highly productive freshwater lake[J]. Organic Geochemistry, 1995, 22(1): 231-235. |
35 | BECHTEL A, WOSZCZYK M, REISCHENBACHER D, et al. Biomarkers and geochemical indicators of Holocene environmental changes in coastal Lake Sarbsko (Poland) [J]. Organic Geochemistry, 2007, 38(7): 1 112-1 131. |
36 | NAEHER S, SCHAEFFER P, ADAM P, et al. Maleimides in recent sediments-using chlorophyll degradation products for palaeoenvironmental reconstructions[J]. Geochimica et Cosmochimica Acta, 2013, 119: 248-263. |
37 | AZIZUDDIN A D, ALI N A M, TAY K S, et al. Characterization and sources of extractable organic matter from sediment cores of an urban lake (Tasik Perdana), Kuala Lumpur, Malaysia[J]. Environmental Earth Sciences, 2014, 71(10): 4 363-4 377. |
38 | SEREBRENNIKOVA O V, STREL’NIKOVA E B, DUCHKO M A, et al. Org. matter chemistry in bottom sediments of freshwater and salt lakes in Southern Siberia[J]. Water Resources, 2015, 42(6): 798-809. |
39 | van BREE L G J, RIJPSTRA W I C, AL-DHABI N A, et al. Des-A-lupane in an East African lake sedimentary record as a new proxy for the stable carbon isotopic composition of C3 plants[J]. Organic Geochemistry, 2016, 101: 132-139. |
40 | van BREE L G J, ISLAM M M, RIJPSTRA W I C, et al. Origin, formation and environmental significance of des-A-arborenes in the sediments of an East African crater lake[J]. Organic Geochemistry, 2018, 125: 95-108. |
41 | DOIRON K E, SCHIMMELMANN A, NGUYEN-V?N H, et al. Biomarkers, including botryococcenes, in maar lake sediments from Vietnam record fluctuations in phytoplankton dynamics[C]// 29th international meeting on organic geochemistry. Gothenburg, Sweden: European Association of Geoscientists & Engineers, 2019. |
42 | LOPES A A, PEREIRA V B, AMORA-NOGUEIRA L, et al. Hydrocarbon sedimentary organic matter composition from different water-type floodplain lakes in the Brazilian Amazon[J]. Organic Geochemistry, 2021, 159. DOI:10.1016/j.orggeochem.2021.104287 . |
43 | JACOB J, DISNAR J R, BOUSSAFIR M, et al. Contrasted distributions of triterpene derivatives in the sediments of Lake Ca?ó reflect paleoenvironmental changes during the last 20,000 yrs in NE Brazil[J]. Organic Geochemistry, 2007, 38(2): 180-197. |
44 | HERNES P J, BENNER R, COWIE G L, et al. Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3 109-3 122. |
45 | OTTO A, SIMONEIT B R T. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3 505-3 527. |
46 | OTTO A, WHITE J D, SIMONEIT B R T. Natural product terpenoids in Eocene and Miocene conifer fossils[J]. Science, 2002, 297(5 586): 1 543-1 545. |
47 | OTTO A, SIMONEIT B R T, REMBER W C. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species[J]. Review of Palaeobotany and Palynology, 2003, 126(3/4): 225-241. |
48 | REGNERY J, PüTTMANN W, KOUTSODENDRIS A, et al. Comparison of the paleoclimatic significance of higher land plant biomarker concentrations and pollen data: a case study of lake sediments from the Holsteinian interglacial[J]. Organic Geochemistry, 2013, 61: 73-84. |
49 | HAUKE V, GRAFF R, WEHRUNG P, et al. Novel triterpene-derived hydrocarbons of the arborane/fernane series in sediments: part II[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3 595-3 602. |
50 | HUANG Y S, LOCKHEART M J, LOGAN G A, et al. Isotope and molecular evidence for the diverse origins of carboxylic acids in leaf fossils and sediments from the Miocene Lake Clarkia deposit, Idaho, U.S.A[J]. Organic Geochemistry, 1996, 24(3): 289-299. |
51 | BORREGO A G, BLANCO C G, PüTTMANN W. Geochemical significance of the aromatic hydrocarbon distribution in the bitumens of the Puertollano oil shales, Spain[J]. Organic Geochemistry, 1997, 26(3/4): 219-228. |
52 | SABEL M, BECHTEL A, PüTTMANN W, et al. Palaeoenvironment of the Eocene Eckfeld Maar lake (Germany): implications from geochemical analysis of the oil shale sequence[J]. Organic Geochemistry, 2005, 36(6): 873-891. |
53 | TUO J C, PHILP R P. Saturated and aromatic diterpenoids and triterpenoids in Eocene coals and mudstones from China[J]. Applied Geochemistry, 2005, 20(2): 367-381. |
54 | HAUKE V, GRAFF R, WEHRUNG P, et al. Novel triterpene-derived hydrocarbons of arborane/fernane series in sediments. Part I[J]. Tetrahedron, 1992, 48(19): 3 915-3 924. |
55 | BOUVIER F, RAHIER A, Biogenesis CAMARA B., molecular regulation and function of plant isoprenoids[J]. Progress in Lipid Research, 2005, 44(6): 357-429. |
56 | NAKAMURA H. Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction[J]. Researches in Organic Geochemistry, 2019, 35(2): 11-35. |
57 | ABE I, ROHMER M, PRESTWICH G D. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes[J]. Chemical Reviews, 1993, 93(6): 2 189-2 206. |
58 | RULLK?TTER J, PEAKMAN T M, HAVEN H LO TEN. Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry[J]. Organic Geochemistry, 1994, 21(3/4): 215-233. |
59 | MURRAY A P, SOSROWIDJOJO I B, ALEXANDER R, et al. Oleananes in oils and sediments: evidence of marine influence during early diagenesis? [J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1 261-1 276. |
60 | SCHNELL G, SCHAEFFER P, TARDIVON H, et al. Contrasting diagenetic pathways of higher plant triterpenoids in buried wood as a function of tree species [J]. Organic Geochemistry, 2014, 66: 107-124. |
61 | YANES C, ALVAREZ H, JAFFé R. Geochemistry of a tropical lake (Lake Leopoldo) on pseudo-karst topography within the Roraima Group, Guayana Shield, Venezuela[J]. Applied Geochemistry, 2006, 21(6): 870-886. |
62 | MILLE G, GUILIANO M, ASIA L, et al. Sources of hydrocarbons in sediments of the Bay of Fort de France (Martinique) [J]. Chemosphere, 2006, 64(7): 1 062-1 073. |
63 | DEVON T K, SCOTT A L. Handbook of naturally occurring compounds[M]. New York: Academic Press, 1975: 378-380. |
64 | HILL R A, CONNOLLY J D. Triterpenoids[J]. Natural Product Reports, 2018, 35: 1 294-1 329. |
65 | LOHMANN F, TRENDEL J M, HETRU C, et al. C-29 tritiated β-amyrin: chemical synthesis aiming at the study of aromatization processes in sediments[J]. Journal of Labelled Compounds and Radiopharmaceuticals, 1990, 28(4): 377-386. |
66 | FREEMAN K H, BOREHAM C J, SUMMONS R E, et al. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis[J]. Organic Geochemistry, 1994, 21(10): 1 037-1 049. |
67 | LOGAN G A, EGLINTON G. Biogeochemistry of the Miocene lacustrine deposit, at Clarkia, northern Idaho, USA[J]. Organic Geochemistry, 1994, 21(8/9): 857-870. |
68 | BOREHAM C J, SUMMONS R E, ROKSANDIC Z, et al. Chemical, molecular and isotopic differentiation of organic facies in the Tertiary lacustrine Duaringa oil shale deposit, Queensland, Australia[J]. Organic Geochemistry, 1994, 21(6/7): 685-712. |
69 | JACOB J, DISNAR J, BOUSSAFIR M, et al. Pentacyclic triterpene methyl ethers in recent lacustrine sediments (Lagoa do Caco, Brazil)[J]. Organic Geochemistry, 2005, 36: 449-461. |
70 | AMEEN B A, MAJEED S N, ABDUL D A. HPLC analysis of fatty acids and triterpenoids in fruit of Hawthorn (Crataegus azarolus) in Iraqi Kurdistan region[J]. Asian Journal of Chemistry, 2013, 25(5): 2 750-2 754. |
71 | STEFANOVA M, IVANOV D A, UTESCHER T. Geochemical appraisal of palaeovegetation and climate oscillation in the Late Miocene of Western Bulgaria[J]. Organic Geochemistry, 2011, 42(11): 1 363-1 374. |
72 | HEMMERS H, GüLZ P G, MARNER F J, et al. Pentacyclic triterpenoids in epicuticular waxes from Euphorbia lathyris L., Euphorbiaceae[J]. Zeitschrift Für Naturforschung C, 1989, 44(3/4): 193-201. |
73 | OTTO A, SIMONEIT B R T, REMBER W C. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA[J]. Organic Geochemistry, 2005, 36(6): 907-922. |
74 | BANTA A B, WEI J H, GILL C C C, et al. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): 245-250. |
75 | DIEFENDORF A F, FREEMAN K H, WING S L. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance[J]. Geochimica et Cosmochimica Acta, 2012, 85: 342-356. |
76 | STEFANOVA M, IVANOV D A, SIMONEIT B R T. Paleoenvironmental application of Taxodium macrofossil biomarkers from the Bobov Dol coal formation, Bulgaria[J]. International Journal of Coal Geology, 2013, 120: 102-110. |
77 | FREEMAN K H, HAYES J M, TRENDEL J M, et al. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons[J]. Nature, 1990, 343(6 255): 254-256. |
78 | HAYES J M, TAKIGIKU R, OCAMPO R, et al. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale[J]. Nature, 1987, 329(6 134): 48-51. |
79 | HUANG Y S, LOCKHEART M J, COLLISTER J W, et al. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: hydrocarbons and alcohols[J]. Organic Geochemistry, 1995, 23(9): 785-801. |
80 | XU Y P, JAFFé R. Biomarker-based paleo-record of environmental change for an eutrophic, tropical freshwater lake, Lake Valencia, Venezuela[J]. Journal of Paleolimnology, 2008, 40(1): 179-194. |
81 | LIU H, LIU W G. n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2016, 99: 10-22. |
82 | AICHNER B, HERZSCHUH U, WILKES H. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau[J]. Organic Geochemistry, 2010, 41(7): 706-718. |
83 | LIU H, LIU W G. Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau[J]. Organic Geochemistry, 2017, 113: 17-26. |
84 | STREET-PERROTT F A, HUANG Y, PERROTT R A, et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems[J]. Science, 1997, 278(5 342): 1 422-1 426. |
85 | LIU J G, AN Z S. Leaf wax n-alkane carbon isotope values vary among major terrestrial plant groups: different responses to precipitation amount and temperature, and implications for paleoenvironmental reconstruction[J]. Earth-Science Reviews, 2020, 202. DOI:10.1016/j.earscirev.2020.103081 . |
86 | LIU W G, YANG H, WANG H Y, et al. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: a dual indicator of paleoenvironment in the Qinghai-Tibet Plateau[J]. Organic Geochemistry, 2015, 83/84: 190-201. |
87 | BRINCAT D, YAMADA K, ISHIWATARI R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4): 287-294. |
88 | ANDRAE J W, MCINERNEY F A, SNIDERMAN J M K. Carbon isotope systematics of leaf wax n-alkanes in a temperate lacustrine depositional environment[J]. Organic Geochemistry, 2020, 150. DOI:10.1016/j.orggeochem.2020.104121 . |
89 | HUANG Xianyu, ZHANG Yiming. An overview of the applications of lipid carbon isotope compositions in the paleoenvironmental and paleoecological reconstructions in lacustrine and peat deposits[J]. Advances in Earth Science, 2019, 34(1): 20-33. |
89 | 黄咸雨, 张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33. |
90 | van GEEL B, GELORINI V, LYARUU A, et al. Diversity and ecology of tropical African fungal spores from a 25, 000-year palaeoenvironmental record in southeastern Kenya[J]. Review of Palaeobotany and Palynology, 2011, 164(3/4): 174-190. |
91 | CARPENTER S R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29): 10 002-10 005. |
92 | LI H B, XING P, WU Q L. Characterization of the bacterial community composition in a hypoxic zone induced by microcystis blooms in Lake Taihu, China[J]. FEMS Microbiology Ecology, 2012, 79(3): 773-784. |
93 | K?BBING J F, PATUZZI F, BARATIERI M, et al. Economic evaluation of common reed potential for energy production: a case study in Wuliangsuhai Lake (Inner Mongolia, China) [J]. Biomass and Bioenergy, 2014, 70: 315-329. |
94 | WANG X L, WEI J X, BAI N, et al. The phosphorus fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake, China [J]. Environmental Science and Pollution Research, 2018, 25(21): 20 648-20 661. |
95 | GUO H, HU Q, JIANG T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China[J]. Journal of Hydrology, 2008, 355(1/2/3/4): 106-122. |
/
〈 |
|
〉 |