综述与评述

大洋铁锰结壳年代框架模型的天文调谐校正:方法与应用

  • 郭栋山 ,
  • 韩喜球 ,
  • 范维佳 ,
  • 邱中炎 ,
  • 李谋 ,
  • 容雅鑫
展开
  • 1.浙江大学海洋学院,浙江 舟山 316021
    2.自然资源部海底科学重点实验室,自然资源部 第二海洋研究所,浙江 杭州 310012
    3.上海交通大学海洋学院,上海 200240
郭栋山(1998-),女,山西吕梁人,硕士研究生,主要从事多金属结壳与古海洋学研究. E-mail: 22034200@zju.edu.cn
韩喜球(1969-),女,浙江台州人,研究员,主要从事海底资源与成矿系统研究. E-mail: xqhan@sio.org.cn

收稿日期: 2022-10-18

  修回日期: 2022-12-07

  网络出版日期: 2023-03-02

基金资助

国家自然科学基金项目“海山结壳高分辨率地球化学记录:上新世以来中北太平洋经向环流演化”(41606061);浙江省“万人计划”杰出人才项目(2018R51003)

Astronomical Tuning and Calibration for Age Model of Pelagic Fe-Mn Crust: Methods and Application

  • Dongshan GUO ,
  • Xiqiu HAN ,
  • Weijia FAN ,
  • Zhongyan QIU ,
  • Mou LI ,
  • Yaxin RONG
Expand
  • 1.Ocean College, Zhejiang University, Zhoushan Zhejiang 316021, China
    2.Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    3.School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
GUO Dongshan (1998-), female, Lüliang City, Shanxi Province, Master student. Research areas include polymetalic crusts and paleoceanography. E-mail: 22034200@zju.edu.cn
HAN Xiqiu (1969-), female, Taizhou City, Zhejiang Province, Professor. Research areas include submarine mineral resources and metallogenic system. E-mail: xqhan@sio.org.cn

Received date: 2022-10-18

  Revised date: 2022-12-07

  Online published: 2023-03-02

Supported by

the National Natural Science Foundation of China “High-resolution geochemical records of seamount crusts: evolution of meridional circulation in the Central North Pacific since Pliocene”(41606061);The “Ten-thousand Talents Plan” of Zhejiang Province(2018R51003)

摘要

海山铁锰结壳是记录古海洋环境演化的重要载体,建立可靠且高分辨率的年代框架是解译其中信息的关键。结壳定年有多种方法,但是在定年范围、定年精度及准确性等方面仍各具局限性。地球轨道印记法及天文调谐校正技术是建立结壳高分辨率年龄框架的有效途径,为利用结壳研究万年尺度的古气候与古海洋环境演化提供了可能。首先对结壳的现有定年方法进行了简要回顾和总结,重点综述了地球轨道印记法及天文调谐校正技术,并分析了各种天文检验与调谐方法在结壳中的适用性与可靠性。认为探究结壳记录中天文信号的影响因素、选择合适的环境替代指标并高分辨率提取其空间序列等,是应用地球轨道周期印记法为海山结壳建立可靠年代框架亟待努力的方向。

本文引用格式

郭栋山 , 韩喜球 , 范维佳 , 邱中炎 , 李谋 , 容雅鑫 . 大洋铁锰结壳年代框架模型的天文调谐校正:方法与应用[J]. 地球科学进展, 2023 , 38(2) : 125 -136 . DOI: 10.11867/j.issn.1001-8166.2022.103

Abstract

Ferromanganese crusts on seamounts are critical archives of the evolutionary history of paleo-oceanic environmental history, and a high-resolution age framework is essential for interpreting the information therein. Several approaches are available for determining the age of crusts, however, each still has limitations in terms of the time scale, resolution, or precision. The Earth orbital pacing method in combination with astronomical tuning can provide an effective way to establish a high-resolution age framework for crusts, which offers the possibility of using crusts to study the 10 000-year-scale evolution of paleo-climatic and paleo-oceanic environments. This study first briefly reviews the existing dating methods for crusts, then introduces in detail the Earth orbital pacing method combined with astronomical tuning and examines the applicability and reliability of various astronomical tests and tuning methods in crusts. The investigation of the specific influence mechanism of astronomical signals, the selection of suitable environmental proxies, and the high-resolution extraction of their spatial series are considered to be the most important directions for the establishment of a reliable age framework for crusts using the Earth orbital pacing method.

参考文献

1 KOSCHINSKY A, HEIN J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2017, 13(3): 177-182.
2 JOSSO P, van PEER T, HORSTWOOD M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts[J]. Earth and Planetary Science Letters, 2021, 553. DOI:10.1016/j.epsl.2020.116651 .
3 SOMAYAJULU B L K. Growth rates of oceanic manganese nodules: implication to their genesis[J]. Paleo-Earth Environment and Resource Potential, 2000, 78(3): 300-308.
4 CLAUDE C, SUHR G, HOFMANN A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4 845-4 854.
5 LYLE M. Estimating growth rates of ferromanganese nodules from chemical compositions: implications for nodule formation processes[J]. Geochimica et Cosmochimica Acta, 1982, 46(11): 2 301-2 306.
6 HUN C H, KU T L. Radiochemical observations on manganese nodules from three sedimentary environments in the north Pacific[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 951-963.
7 PUTEANUS D. Correlation of Co concentration and growth rate—a method for age determination of ferromanganese crusts[J]. Chemical Geology, 1988, 69(1/2): 73-85.
8 MANHEIM F T, LANE-BOSTWICK C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific Sea floor[J]. Nature, 1988, 335(6 185): 59-62.
9 MCMURTRY G M. Cenozoic accumulation history of a Pacific ferromanganese crust[J]. Earth and Planetary Science Letters, 1994, 125(1/2/3/4): 105-118.
10 HARADA K, NISHIDA S. Biostratigraphy of some marine manganese nodules[J]. Nature, 1976, 260(5 554): 770-771.
11 KADKO D, BURCKLE L H. Manganese nodule growth rates determined by fossil diatom dating[J]. Nature, 1980, 287(5 784): 725-726.
12 JOSHIMA M. Magnetostratigraphy of hydrogenetic manganese crusts from northwestern Pacific seamounts[J]. Marine Geology, 1998, 146(1/2/3/4): 53-62.
13 ODA H, USUI A, MIYAGI I, et al. Ultrafine-scale magnetostratigraphy of marine ferromanganese crust[J]. Geology, 2011, 39(3): 227-230.
14 LUO Shunkai, ZHOU Huaiyang, ZHAO Guoqing, et al. Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 135-145.
14 罗顺开, 周怀阳, 赵国庆, 等. 加瓜海脊铁锰结壳的年龄及其定年方法适用性比较[J]. 海洋地质与第四纪地质, 2022, 42(1): 135-145.
15 JOSSO P, PARKINSON I, HORSTWOOD M, et al. Improving confidence in ferromanganese crust age models: a composite geochemical approach[J]. Chemical Geology, 2019, 513: 108-119.
16 KLEMM V. Osmium isotope stratigraphy of a marine ferromanganese crust[J]. Earth and Planetary Science Letters, 2005, 238(1/2): 42-48.
17 TOKUMARU A, NOZAKI T, SUZUKI K, et al. Re-Os isotope geochemistry in the surface layers of ferromanganese crusts from the Takuyo Daigo Seamount, northwestern Pacific Ocean[J]. Geochemical Journal, 2015, 49(3): 233-241.
18 WANG Yang, FANG Nianqiao. Precise characteristics of Os isotopic composition of seawater since 80 Ma: recorded in polymetallic crusts from CW Pacific[J]. Marine Sciences, 2020, 44(9): 21-28.
18 王洋, 方念乔. 80Ma以来海水Os同位素组成曲线的精细特征: 中、西太平洋多金属结壳的记录[J]. 海洋科学, 2020, 44(9): 21-28.
19 VONDERHAAR D L, MAHONEY J J, McMURTRY G M. An evaluation of strontium isotopic dating of ferromanganese oxides in a marine hydrogenous ferromanganese crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4 267-4 277.
20 HAN X Q. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 143-157.
21 HAN Xiqiu, QIU Zhongyan, MA Weilin, et al. High-resolution dating of Co-rich crusts: a comparative study using the methods of orbital pacing and 230Thex/232Th dating [J]. Science in China Series D: Earth Sciences, 2009, 39(4): 497-503.
21 韩喜球, 邱中炎, 马维林, 等. 富钴结壳高分辨率定年: 地球轨道周期印记法与230Thex/232Th测年法对比研究[J]. 中国科学D辑: 地球科学, 2009, 39(4): 497-503.
22 MARKLEY M J, TEYSSIER C, COSCA M. The relation between grain size and 40Ar/39Ar date for Alpine white Mica from the Siviez-Mischabel Nappe, Switzerland[J]. Journal of Structural Geology, 2002, 24(12): 1 937-1 955.
23 BADA J L. The dating of fossil bones using the racemization of isoleucine[J]. Earth and Planetary Science Letters, 1972, 15(3): 223-231.
24 BURNETT W C. Growth rates of Pacific manganese nodules as deduced by uranium-series and hydration-rind dating techniques[J]. Earth and Planetary Science Letters, 1976, 33(2): 208-218.
25 PRASAD M S. Australasian microtektites in a substrate: a new constraint on ferromanganese crust accumulation rates[J]. Marine Geology, 1994, 116(3/4): 259-266.
26 MIZELL K, HEIN J R, LAM P J, et al. Geographic and oceanographic influences on ferromanganese crust composition along a Pacific Ocean meridional transect, 14N to 14S[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2). DOI:10.1029/2019GC008716 .
27 KYTE F T, LEINEN M, HEATH G R, et al. Cenozoic sedimentation history of the central North Pacific: inferences from the elemental geochemistry of core LL44-GPC3[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1 719-1 740.
28 STRASSER A H, HECKEL P H. Cyclostratigraphy concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2007, 42(2): 75-114.
29 PISIAS N G, IMBRIE J. Orbital geometry, CO2, and Pleistocene climate[J]. Oceanus, 1986, 29(4): 43-49.
30 WU Huaichun, ZHANG Shihong, FENG Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science, 2011, 36(3): 409-428.
30 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学, 2011, 36(3): 409-428.
31 HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1 703-1 734.
32 HAN Xiqiu, QIU Zhongyan. The identification of milankovitch cycles in the gray-level series of Fe-Mn crust from the central Pacific Ocean and its growth rate evolution[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1 006-1 011.
32 韩喜球, 邱中炎. 中太平洋铁锰结壳灰度序列中米兰柯维奇周期的识别及结壳生长速率的演化[J]. 沉积学报, 2010, 28(5): 1 006-1 011.
33 KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: genetic implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5 113-5 132.
34 HALBACH P. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas[J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87.
35 LUSTY P A J, HEIN J R, JOSSO P. Formation and occurrence of ferromanganese crusts: Earth’s storehouse for critical metals[J]. Elements, 2018, 14(5): 313-318.
36 HAN Xiqiu, QIU Zhongyan, MA Weilin. Seamount cobalt-rich crusts: high resolution age framework and Paleo-environment records[M]. Beijing: Geological Publishing House, 2014.
36 韩喜球,邱中炎,马维林. 海山富钴结壳:高分辨率年代框架与古环境记录研究[M]. 北京: 地质出版社, 2014.
37 HINNOV L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
38 WEEDON G P. Time series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles[M]. Cambridge: Cambridge University Press, 2003.
39 ZEEDEN C, MEYERS S R, LOURENS L J, et al. Testing astronomically tuned age models[J]. Paleoceanography, 2015, 30(4): 369-383.
40 MEYERS S, SAGEMAN B. Quantification of deep-time orbital forcing by average spectral misfit[J]. American Journal of Science, 2007, 307: 773-792.
41 MEYERS S R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization[J]. Paleoceanography, 2015, 30(12): 1 625-1 640.
42 LI M S. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
43 JOSSO P, van PEER T, HORSTWOOD M S A, et al. High-resolution LA-MC-ICP-MS Pb isotope data (65.5-63 Ma) for Tropic Seamount, Atlanticnorth-east, and Matlab and R processing scripts for cyclostratigraphic analysis[J]. British Geological Survey,2020. DOI:10.5285/7a9eb43f-a5c4-450c-9fe1-c60f2703a1d1 .
44 CHRISTENSEN J N, HALLIDAY A N, GODFREY L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts[J]. Science, 1997, 277(5 328): 913-918.
45 LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
46 LI M, HINNOV L A, HUANG C, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-03454-y .
47 JAKUBOVITZ D, GIRYES R, RODRIGUES M R D. Generalization error in deep learning[M]// Compressed sensing and its applications. Birkh?user, Cham, 2019: 153-193.
48 HINNOV L A. Cyclostratigraphy and astrochronology in 2018[J]. Stratigraphy & Timescales, 2018, 3: 1-80.
文章导航

/