收稿日期: 2022-05-03
修回日期: 2022-09-14
网络出版日期: 2022-12-16
基金资助
国家自然科学基金项目“基于生物标志物和14C的东海沉积陆源有机质埋藏效率和机制研究”(41906032)
A Review of Techniques of Purification of Source-Specific Sterols for Compound-Specific Isotope Analysis and Applications
Received date: 2022-05-03
Revised date: 2022-09-14
Online published: 2022-12-16
Supported by
the National Natural Science Foundation of China “Burial efficiency and mechanistic controls of terrestrial organic matter in East China Sea: constrained by biomarker and 14C”(41906032)
甾醇类化合物作为一类来源明确的生物标志物,其碳氢同位素分析技术是古环境研究中很有价值的工具。甾醇的氢同位素值具有重建古水文环境和古海洋盐度的潜力,成为古气候研究中最佳的氢同位素分析目标物。利用气相色谱—稳定同位素比质谱仪获得高精度的同位素值需要目标分析物和邻近化合物之间有较高的分离度,即能排除邻近峰的影响。然而自然环境样品中的甾醇类化合物难以纯化,在一定程度上限制了甾醇单体同位素在古环境研究中的广泛应用。通过总结几种不断改进的制备液相色谱纯化制备甾醇类单体化合物的方法,综合介绍了甾醇类单体化合物纯化分析技术及其同位素应用的研究现状。在实验室成功分离甲藻甾醇和菜子甾醇的基础上,拟通过将我国边缘海沉积物中的甾醇单体化合物分离、纯化和富集,使其能够满足稳定氢同位素和碳同位素的测定要求,为我国边缘海环境参数重建研究提供技术支持。
李莉 , 于蒙 , 赵美训 . 甾醇类单体化合物纯化分析技术及其同位素应用的研究进展[J]. 地球科学进展, 2022 , 37(12) : 1223 -1231 . DOI: 10.11867/j.issn.1001-8166.2022.069
Source-specific biomarkers are the best targets for isotope analysis and paleoclimatic applications. Compound-specific hydrogen isotope (δ2H) measurements of sterols can be applied to the reconstruction of hydroclimatic conditions and paleo-sea surface salinity. Precise measurements using gas chromatography-isotope ratio mass spectrometry require a high baseline resolution between target analyte and adjacent compounds. However, isotope analysis of sterols for paleoclimatic applications is limited due to the difficulty in purifying complex natural samples. This study aimed to review several improved purification methods of source-specific sterols using liquid chromatography and the applications of compound-specific isotope analysis of sterols in lakes or seas. In addition, we successfully purified dinosterol and brassicasterol from the Chinese marginal sea surface sediments, meeting the requirements for δ2H and carbon isotope analysis. This study provides significant insights and technical support for the paleoenvironmental reconstruction in the Chinese marginal seas.
1 | ATWOOD A R, SACHS J P. Purification of dinosterol from complex mixtures of sedimentary lipids for hydrogen isotope analysis[J]. Organic Geochemistry, 2012, 48: 37-46. |
2 | SACHSE D, BILLAULT I, BOWEN G J, et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 221-249. |
3 | MALONEY A E, RICHEY J N, NELSON D B, et al. Contrasting Common Era climate and hydrology sensitivities from paired lake sediment dinosterol hydrogen isotope records in the South Pacific Convergence Zone[J]. Quaternary Science Reviews, 2022, 281: 107421. |
4 | XING L, SACHS J P, ZHANG H L, et al. Hydrogen isotopes in palmitic and stearic acids in suspended particles from the Changjiang River Estuary[J]. Science China Earth Sciences, 2016, 59(5): 981-988. |
5 | YUAN Zineng, XING Lei, ZHANG Hailong, et al. Progress of biomarker stable hydrogen isotope and its application to marine paleoenvironmental reconstruction[J]. Advances in Earth Science, 2012, 27(3): 276-283. |
5 | 袁子能, 邢磊, 张海龙, 等. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283. |
6 | JIA Jiayuan, HE Juan, WEI Bingbing, et al. Relationship between compound-specific δD of marine algae biomarkers and surface seawater salinity and its implication for paleoceanography reconstruction[J]. Advances in Earth Science, 2022, 37(4): 392-406. |
6 | 贾佳源, 贺娟, 韦兵兵, 等. 海洋藻类生物标志物单体氢同位素与表层海水盐度关系研究进展与启示[J]. 地球科学进展, 2022, 37(4): 392-406. |
7 | SACHS J P, SCHWAB V F. Hydrogen isotopes in dinosterol from the Chesapeake Bay Estuary[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 444-459. |
8 | ENGLEBRECHT A C, SACHS J P. Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 253-4 265. |
9 | SCHOUTEN S, OSSEBAAR J, SCHREIBER K, et al. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica[J]. Biogeosciences, 2006, 3: 113-119 . |
10 | SCHWAB V F, SACHS J P. Hydrogen isotopes in individual alkenones from the Chesapeake Bay Estuary[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7 552-7 565. |
11 | ZHANG Zhaohui, SACHS J P. Hydrogen isotope fractionation in freshwater algae: I. variations among lipids and species[J]. Organic Geochemistry, 2007, 38(4): 582-608. |
12 | SESSIONS A L, BURGOYNE T W, SCHIMMELMANN A, et al. Fractionation of hydrogen isotopes in lipid biosynthesis[J]. Organic Geochemistry, 1999, 30(9): 1 193-1 200. |
13 | VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/6/7): 1 163-1 179. |
14 | VOLKMAN J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506. |
15 | SCHWAB V F, SACHS J P. The measurement of D/H ratio in alkenones and their isotopic heterogeneity[J]. Organic Geochemistry, 2009, 40(1): 111-118. |
16 | SMITTENBERG R H, SAENGER C, DAWSON M N, et al. Compound-specific D/H ratios of the marine lakes of Palau as proxies for West Pacific Warm Pool hydrologic variability[J]. Quaternary Science Reviews, 2011, 30(7/8): 921-933. |
17 | SACHSE D, KAHMEN A, GLEIXNER G. Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acerpseudoplatanus)[J]. Organic Geochemistry, 2009, 40(6): 732-742. |
18 | BARRETT S M, VOLKMAN J K, DUNSTAN G A, et al. Sterols of 14 species of marine diatoms (bacillariophyta)[J]. Journal of Phycology, 1995, 31(3): 360-369. |
19 | van der MEER M T J, BAAS M, RIJPSTRA W I C, et al. Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 594-600. |
20 | van der MEER M T J, SANGIORGI F, BAAS M, et al. Molecular isotopic and dinoflagellate evidence for late Holocene freshening of the black sea[J]. Earth and Planetary Science Letters, 2008, 267(3/4): 426-434. |
21 | KASPER S, van der MEER M T J, CASTA?EDA I S, et al. Testing the alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel)[J]. Organic Geochemistry, 2015, 78: 62-68. |
22 | GOULD J, KIENAST M, DOWD M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy[J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497. |
23 | MALONEY A E, NELSON D B, RICHEY J N, et al. Reconstructing precipitation in the tropical South Pacific from dinosterol 2H/1H ratios in lake sediment[J]. Geochimica et Cosmochimica Acta, 2019, 245: 190-206. |
24 | HOLTVOETH J, WHITESIDE J H, ENGELS S, et al. The paleolimnologist’s guide to compound-specific stable isotope analysis—an introduction to principles and applications of CSIA for Quaternary Lake sediments[J]. Quaternary Science Reviews, 2019, 207: 101-133. |
25 | SMITTENBERG R H, SACHS J P. Purification of dinosterol for hydrogen isotopic analysis using high-performance liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2007, 1 169(1/2): 70-76. |
26 | NELSON D B, SACHS J P. Concurrent purification of sterols, triterpenols and alkenones from sediments for hydrogen isotope analysis using high performance liquid chromatography[J]. Organic Geochemistry, 2013, 64: 19-28. |
27 | CHIKARAISHI Y. Carbon and hydrogen isotopic composition of sterols in natural marine brown and red macroalgae and associated shellfish[J]. Organic Geochemistry, 2006, 37(4): 428-436. |
28 | CHIKARAISHI Y, YAMADA Y, NARAOKA H. Carbon and hydrogen isotopic compositions of sterols from riverine and marine sediments[J]. Limnology and Oceanography, 2005, 50(6): 1 763-1 770. |
29 | CHIKARAISHI Y, NARAOKA H. δ 13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan)[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 285-3 297. |
30 | DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
31 | van der MEER M T J, BENTHIEN A, FRENCH K L, et al. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2015, 160: 16-24. |
32 | NELSON D B, SACHS J P. The influence of salinity on D/H fractionation in dinosterol and brassicasterol from globally distributed saline and hypersaline lakes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 325-339. |
33 | RICHEY J N, SACHS J P. Precipitation changes in the western tropical Pacific over the past Millennium[J]. Geological Society of America, 2016, 44(8): 671-674. |
34 | SACHS J P, BLOIS J L, MCGEE T, et al. Southward shift of the Pacific ITCZ during the Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(12): 1 383-1 395. |
35 | SACHS J P, MüGLER I, SACHSE D, et al. Last millennium hydroclimate in the central equatorial North Pacific (5°N, 160°W)[J]. Quaternary Science Reviews, 2021, 259. DOI:10.1016/j.quascirev.2021.106906 . |
36 | JIAO N Z, LIANG Y T, ZHANG Y Y, et al. Carbon pools and fluxes in the China Seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1 535-1 563. |
37 | ZHANG Y, ZHAO M X, CUI Q, et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink[J]. Science China Earth Sciences, 2017, 60(5): 809-820. |
38 | XING Lei, ZHAO Meixun, ZHANG Hailong, et al. Biomarker records of phytoplankton community structure changes in the Yellow Sea over the last 200 years[J]. Periodical of Ocean University of China, 2009, 39(2): 317-322. |
38 | 邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报(自然科学版), 2009, 39(2): 317-322. |
39 | XING Lei, ZHANG Hailong, YUAN Zineng, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1 106-1 115. |
/
〈 |
|
〉 |