青促会之地球科学领域

西北太平洋次表层中尺度涡研究进展和展望

  • 南峰 ,
  • 于非 ,
  • 徐安琪 ,
  • 丁雅楠
展开
  • 1.中国科学院海洋环流与波动重点实验室,中国科学院海洋研究所,山东 青岛 266071
    2.中国科学院 海洋大科学研究中心,山东 青岛 266071
    3.青岛海洋科学与技术试点国家实验室,山东 青岛 266237
    4.中国科学院大学,北京 100049
    5.南京信息工程大学,江苏 南京 210000
南峰(1983-),男,河北保定人,研究员,主要从事海洋涡流相互作用及其气候、生态效应研究. E-mail:nanfeng0515@qdio.ac.cn

收稿日期: 2022-04-28

  修回日期: 2022-05-31

  网络出版日期: 2022-11-16

基金资助

中国科学院青年创新促进会项目(2018241);国家自然科学基金面上项目“西北太平洋次表层中尺度涡三维结构及其形成机制”(41676005)

Progress and Prospect of Subsurface-intensified Eddies in the Northwestern Pacific Ocean

  • Feng NAN ,
  • Fei YU ,
  • Anqi XU ,
  • Yanan DING
Expand
  • 1.CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
    3.Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
    5.Nanjing University of Information Science & Technology, Nanjing 210000, China
NAN Feng (1983-), male, Baoding County, Hebei Province, Professor. Research areas include eddy-current interaction, dynamics and its climate effects. E-mail: nanfeng0515@qdio.ac.cn

Received date: 2022-04-28

  Revised date: 2022-05-31

  Online published: 2022-11-16

Supported by

the Youth Innovation Promotion Association of Chinese Academy of Sciences(2018241);The National Natural Science Foundation of China “Three-dimensional structure and dynamics of the subsurface mesoscale eddy in the northwestern Pacific Ocean”(41676005)

摘要

中尺度涡对大洋环流、海洋能量平衡、水团分布、热盐和营养物质输运等方面都具有重要意义。根据其垂向密度结构和旋转流速核心位置不同,中尺度涡有表层和次表层中尺度涡之分。基于卫星海面高度计资料的应用,对表层中尺度涡的研究日趋成熟。次表层中尺度涡垂向密度呈透镜式结构,其最大旋转流速核心位于混合层以下,对次表层涡的研究依赖于现场观测资料。目前次表层涡在世界大洋中偶有发现,因此国内外对其研究方兴未艾。聚焦于西北太平洋的次表层中尺度涡,全面回顾了其观测和数值模式的结果,总结了其垂向结构特征、时空分布和移动规律,以及可能的生成机制等。同时展望了其对海洋能量平衡、水团分布、声传播和海洋生物地球化学要素分布等可能的影响,以及未来可能的研究发展方向。

本文引用格式

南峰 , 于非 , 徐安琪 , 丁雅楠 . 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 2022 , 37(11) : 1115 -1126 . DOI: 10.11867/j.issn.1001-8166.2022.061

Abstract

Mesoscale eddies play an important role in phenomena such as general circulation, momentum budgets, ocean water mass distribution, and water and nutrient transport. Based on the vertical structure of the density and current core, mesoscale eddies are classified into two categories: surface- and subsurface-intensified. The utilization of remote sensing has provided considerable information on surface-intensified eddies. However, little is known about subsurface eddies due to the lack of in-situ observations, although they have been found occasionally in the global ocean. Currently, subsurface eddies are a trending topic within the scientific community. This study reviews the scientific background and research progress on subsurface eddies, with a focus on the northwestern Pacific Ocean. The vertical structure, evolutionary process, and possible formation mechanism of subsurface eddies are summarized based on observational and modelling results. Their influence on marine biogeochemistry, marine sound propagation, and possible important scientific issues are also discussed.

参考文献

1 CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15). DOI:10.1029/2007GL030812 .
2 CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216.
3 XIU P, PALACZ A P, CHAI F, et al. Iron flux induced by Haida eddies in the Gulf of Alaska[J]. Geophysical Research Letters, 2011, 38(13). DOI:10.1029/2011GL047946 .
4 DONG C, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5: 3294.
5 XU C, SHANG X D, HUANG R X. Horizontal eddy energy flux in the world oceans diagnosed from altimetry data[J]. Scientific Reports, 2014, 4: 5316.
6 ZHANG Z G, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6 194): 322-324.
7 ZHANG Z G, ZHANG Y, WANG W. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1 653-1 664.
8 LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17). DOI:10.1029/2021GL094772 .
9 GORDON A L, GIULIVI C F, LEE C M, et al. Japan/east Sea intrathermocline eddies[J]. Journal of Physical Oceanography, 2002, 32(6): 1 960-1 974.
10 CHIANG T L, QU T D. Subthermocline eddies in the western equatorial Pacific as shown by an eddy-resolving OGCM[J]. Journal of Physical Oceanography, 2013, 43(7): 1 241-1 253.
11 CHIANG T L, WU C R, QU T D, et al. Activities of 50-80 day subthermocline eddies near the Philippine coast[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 606-3 623.
12 ZHANG Z W, LI P L, XU L X, et al. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014[J]. Geophysical Research Letters, 2015, 42(15): 6 438-6 445.
13 FAGHMOUS J H, FRENGER I, YAO Y, et al. A daily global mesoscale ocean eddy dataset from satellite altimetry [J]. Scientific Data, 2015, 2: 150028.
14 ZHANG Z G, ZHANG Y, WANG W, et al. Universal structure of mesoscale eddies in the ocean[J]. Geophysical Research Letters, 2013, 40(14): 3 677-3 681.
15 TAKIKAWA T, ICHIKAWA H, ICHIKAWA K, et al. Extraordinary subsurface mesoscale eddy detected in the southeast of Okinawa in February 2002[J]. Geophysical Research Letters, 2005, 32(17). DOI:10.1029/2005gl023842 .
16 OKA E, TOYAMA K, SUGA T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophysical Research Letters, 2009, 36(8). DOI:10.1029/2009GL037540 .
17 FIRING E, KASHINO Y, HACKER P. Energetic subthermocline currents observed east of Mindanao[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(3/4): 605-613.
18 ZHANG Z X, QIAO F L, GUO J S. Subsurface eddies in the southern South China Sea detected from in situ observation in October 2011[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 87: 30-34.
19 KUMAR S, MADHUBABU V, RAO D. Energy and generating mechanism of a subsurface, cold core eddy in the bay of Bengal[J]. Indian Journal of Marine Sciences, 1992, 21: 140-142.
20 ZHURBAS V, STIPA T, M?LKKI P, et al. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: observations and numerical experiments[J]. Journal of Geophysical Research: Oceans, 2004, 109(C5). DOI:10.1029/2003JC002074 .
21 NAUW J J, van AKEN H M, LUTJEHARMS J R E, et al. Intrathermocline eddies in the southern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2006, 111(C3). DOI:10.1029/2005JC002917 .
22 BRUNDAGE W L, DUGAN J P. Observations of an anticyclonic eddy of 18 ℃ water in the sargasso sea[J]. Journal of Physical Oceanography, 1986, 16(4): 717-727.
23 OEY L Y, ZHANG H C. The generation of subsurface cyclones and jets through eddy-slope interaction[J]. Continental Shelf Research, 2004, 24(18): 2 109-2 131.
24 YANG G, WANG F, LI Y L, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1 906-1 925.
25 QIU B, CHEN S M. Concurrent decadal mesoscale eddy modulations in the western north Pacific subtropical gyre[J]. Journal of Physical Oceanography, 2013, 43(2): 344-358.
26 MCWILLIAMS J C, FLIERL G R. On the evolution of isolated, nonlinear vortices[J]. Journal of Physical Oceanography, 1979, 9(6): 1 155-1 182.
27 NAN F, YU F, WEI C, et al. Observations of an extra-large subsurface anticyclonic eddy in the northwestern Pacific subtropical gyre[J]. Journal of Marine Science: Research & Development, 2017, 7(4): 1-11. DOI:10.4172/2155-9910.1000234 .
28 ZHANG L L, HUI Y C, QU T D, et al. Seasonal variability of subthermocline eddy kinetic energy east of the Philippines[J]. Journal of Physical Oceanography, 2021, 51(3): 685-699.
29 AZMINUDDIN F, LEE J H, JEON D, et al. Effect of the intensified sub-thermocline eddy on strengthening the Mindanao undercurrent in 2019[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC017883.
30 NAN F, YU F, REN Q, et al. Isopycnal mixing of interhemispheric intermediate waters by subthermocline eddies east of the Philippines[J]. Scientific Reports, 2019, 9(1): 2957.
31 ZHU R C, CHEN Z H, ZHANG Z W, et al. Subthermocline eddies in the kuroshio extension region observed by mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(2): 439-455.
32 LI C, ZHANG Z W, ZHAO W, et al. A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 3 586-3 598.
33 XU A Q, YU F, NAN F. Study of subsurface eddy properties in northwestern Pacific Ocean based on an eddy-resolving OGCM[J]. Ocean Dynamics, 2019, 69(4): 463-474.
34 TAI C K, WHITE W B. Eddy variability in the kuroshio extension as revealed by geosat altimetry: energy propagation away from the jet, Reynolds stress, and seasonal cycle[J]. Journal of Physical Oceanography, 1990, 20(11): 1 761-1 777.
35 QIU B, CHEN S M. Variability of the kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2 090-2 103.
36 RICHARDSON P L, BOWER A S, ZENK W. A census of meddies tracked by floats[J]. Progress in Oceanography, 2000, 45(2): 209-250.
37 SHAPIRO G I, MESCHANOV S L. Distribution and spreading of Red Sea Water and salt lens formation in the northwest Indian Ocean[J]. Deep Sea Research Part A Oceanographic Research Papers, 1991, 38(1): 21-34.
38 SIMPSON J J, LYNN R J. A mesoscale eddy dipole in the offshore California Current[J]. Journal of Geophysical Research: Oceans, 1990, 95(C8): 13 009-13 022.
39 JOHNSON G, MCTAGGART K. Equatorial Pacific 13℃ water eddies in the eastern subtropical south Pacific Ocean[J]. Journal of Physical Oceanography, 2010, 40(1): 226-236.
40 XU Anqi, Research on characteristics and dynamic mechanism of subsurface eddies in the northwestern Pacific Ocean[D]. Beijing: University of Chinese Academy of Sciences, 2021:19-38.
40 徐安琪.西北太平洋次表层中尺度涡特征及其动力机制研究[D]. 北京:中国科学院大学,2021:19-38.
41 LIU Y, DONG C M, GUAN Y P, et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 68: 54-67.
42 CHEN R, THOMPSON A F, FLIERL G R. Time-dependent eddy-mean energy diagrams and their application to the ocean[J]. Journal of Physical Oceanography, 2016, 46(9): 2 827-2 850.
43 XU A Q, YU F, NAN F, et al. Characteristics of subsurface mesoscale eddies in the northwestern tropical Pacific Ocean from an eddy-resolving model[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1 421-1 434.
44 JUNGCLAUS J H. A three-dimensional simulation of the formation of anticyclonic lenses (meddies) by the instability of an intermediate depth boundary current[J]. Journal of Physical Oceanography, 1999, 29(7): 1 579-1 598.
45 COMBES V, HORMAZABAL S, di LORENZO E. Interannual variability of the subsurface eddy field in the Southeast Pacific[J]. Journal of Geophysical Research: Oceans, 2015, 120(7): 4 907-4 924.
46 MOLEMAKER M J, MCWILLIAMS J C, DEWAR W K. Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent[J]. Journal of Physical Oceanography, 2015, 45(3): 613-629.
47 OU H W, GORDON A. Subduction along a midocean front and the generation of intrathermocline eddies: a theoretical study[J]. Journal of Physical Oceanography, 2002, 32(6): 1 975-1 986.
48 THOMAS L N. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3/4): 252-273.
49 SONG H B, CHEN J X, PINHEIRO L M, et al. Progress and prospects of seismic oceanography[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177: 103631.
50 SONG H B, PINHEIRO L M, RUDDICK B, et al. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia)[J]. Journal of Marine Research, 2011, 69(4): 827-842.
51 UEHARA H, SUGA T, HANAWA K, et al. A role of eddies in formation and transport of North Pacific Subtropical Mode Water[J]. Geophysical Research Letters, 2003, 30(13): 1705.
52 NISHIKAWA S, TSUJINO H, SAKAMOTO K, et al. Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the Western North PACIFIC[J]. Journal of Physical Oceanography, 2010, 40(8): 1 748-1 765.
53 XU L X, XIE S P, MCCLEAN J L, et al. Mesoscale eddy effects on the subduction of North Pacific mode waters[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 4 867-4 886.
54 JOHNS W E, LEE T N, ZHANG D X, et al. The Kuroshio east of Taiwan: moored transport Observations from the WOCE PCM-1 array[J]. Journal of Physical Oceanography, 2001, 31(4): 1 031-1 053.
55 ZHANG Z W, LIU Z Y, RICHARDS K, et al. Elevated diapycnal mixing by a subthermocline eddy in the western equatorial Pacific[J]. Geophysical Research Letters, 2019, 46(5): 2 628-2 636.
56 LI Jiaxun, ZHANG Ren, CHEN Yide, et al. Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation[J]. Marine Science Bulletin, 2011, 30(1): 37-46.
56 李佳讯, 张韧, 陈奕德, 等. 海洋中尺度涡建模及其在水声传播影响研究中的应用[J]. 海洋通报, 2011, 30(1): 37-46.
57 ZHANG Lin, LIU Dong, CHEN Wenjing, et al. Deep-sea acoustic field effect under mesoscale eddy conditions[J]. Marine Sciences, 2020, 44(3): 66-73.
57 张林, 刘东, 陈文景, 等. 中尺度涡条件下的深海声场效应研究[J]. 海洋科学, 2020, 44(3): 66-73.
58 CLAUSTRE H, JOHNSON K S, TAKESHITA Y. Observing the global ocean with biogeochemical-Argo[J]. Annual Review of Marine Science, 2020, 12: 23-48.
59 MCGILLICUDDY Jr D J, ANDERSON L A, BATES N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J]. Science, 2007, 316(5 827): 1 021-1 026.
60 GAUBE P, CHELTON D B, STRUTTON P G, et al. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6 349-6 370.
61 RODRíGUEZ F, VARELA M, FERNáNDEZ E, et al. Phytoplankton and pigment distributions in an anticyclonic slope water oceanic eddy (SWODDY) in the southern Bay of Biscay[J]. Marine Biology, 2003, 143(5): 995-1 011.
62 DING Y N, YU F, REN Q, et al. The physical-biogeochemical responses to a subsurface anticyclonic eddy in the northwest Pacific[J]. Frontiers in Marine Science, 2022, 8: 766544.
文章导航

/