综述与评述

青藏高原水汽输送过程及水汽源地研究方法综述

  • 李虎 ,
  • 潘小多
展开
  • 1.中国科学院青藏高原研究所 青藏高原地球系统科学国家重点实验室 三极观测与大数据中心,北京 100101
    2.青海师范大学高原科学与可持续发展研究院,青海 西宁 810016
    3.中国科学院大学,北京 100049
李虎(1998-),男,山东日照人,硕士研究生,主要从事青藏高原水汽数值模拟研究. E-mail:lihu@itpcas.ac.cn
潘小多(1978-),女,浙江瑞安人,研究员,主要从事区域气候变化、数据同化、数据集成和大数据分析等方向研究. E-mail:panxd@itpcas.ac.cn

收稿日期: 2022-06-09

  修回日期: 2022-07-18

  网络出版日期: 2022-10-18

基金资助

国家自然科学基金委基础科学中心项目“青藏高原地球系统”(41988101);中国科学院战略性先导科技专项(A类)“泛第三极环境变化与绿色丝绸之路建设”(XDA20060600)

An Overview of Research Methods on Water Vapor Transport and Sources in the Tibetan Plateau

  • Hu LI ,
  • Xiaoduo PAN
Expand
  • 1.Three-Pole Environment Observation and Big Data Research Center, State Key Laboratory of Tibetan Plateau Earth System Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
    3.University of the Chinese Academy of Sciences, Beijing 100049, China
LI Hu (1998-), male, Rizhao City, Shandong Province, Master student. Research area includes numerical simulation of moisture over the Tibetan Plateau. E-mail: lihu@itpcas.ac.cn
PAN Xiaoduo (1978-), female, Rui’an City, Zhejiang Province, Professor. Research areas include regional climate change, data assimilation, data integration and big data analysis. E-mail: panxd@itpcas.ac.cn

Received date: 2022-06-09

  Revised date: 2022-07-18

  Online published: 2022-10-18

Supported by

Projected supported by the Basic Science Center for Tibetan Plateau Earth System(41988101);The Strategic Priority Research Program of Chinese Academy of Sciences Sub-project of the “Pan-Third Pole environmental change and Green Silk Road Construction”(XDA20060600)

摘要

青藏高原被誉为“亚洲水塔”,研究其水汽输送过程及水汽源地的水汽贡献率对于明晰高原的水汽收支情况有重要意义。首先介绍了现在常用的水汽输送过程及水汽源地的研究方法,并分析了这些方法的优缺点:欧拉方法可定性研究水汽输送特征;拉格朗日方法通过模拟气块运动轨迹,定量分析水汽来源及贡献;欧拉水汽标记法可以对水汽标记,追踪水汽输送过程;而同位素分析法则通过分析水体稳定同位素的变化研究水汽来源。其次重点对青藏高原及其周边地区的水汽来源及水汽输送过程的相关研究成果进行了梳理,分析了青藏高原的主要水汽通道及水汽输送特征。最后在此基础上对目前存在的问题进行了总结,对未来的研究方向进行了展望。

本文引用格式

李虎 , 潘小多 . 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022 , 37(10) : 1025 -1036 . DOI: 10.11867/j.issn.1001-8166.2022.049

Abstract

The Tibetan Plateau, known as the “Asian Water Tower”, is the source of many major rivers in Asia. Its energy and water cycle processes have important impacts on regional and global climate change. Understanding the water vapor transport process and the contribution of water vapor sources is crucial for clarifying the water vapor budget of the plateau. In this study, we analyze the advantages and disadvantages of the research methods used to study the transport and sources of water vapor on the Tibetan Plateau. The classical Euler method was used to study the qualitative features of water vapor transport by calculating the water vapor flux. In addition, Lagrangian trajectory models are essential tools for studying the quantitative characteristics of water vapor transport by simulating the trajectories of humid air parcels. Eulerian tracer methods can be run in parallel with climate models or a posteriori with reanalysis data to track the water vapor transport process. Physical water vapor tracers are powerful tools for studying the water vapor sources of precipitation by measuring stable water isotopes. This study primarily focused on reviewing relevant research on water vapor transport and sources over the Tibetan Plateau and adjacent areas. Based on these studies, the main water vapor channels and characteristics of water vapor transport over the Tibetan Plateau were summarized. The review concluded with a summary of the challenges of current research and a forecast of future research directions.

参考文献

1 YAO Tandong, CHEN Fahu, CUI Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.
1 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931.
2 CHEN F H, DING L, PIAO S L, et al. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era[J]. Science Bulletin, 2021, 66(13): 1 263-1 266.
3 LI X, CHE T, LI X W, et al. CASEarth poles: big data for the three poles[J]. Bulletin of the American Meteorological Society, 2020, 101(9): E1475-E1491.
4 QIU J. China: the Third Pole[J]. Nature, 2008, 454(7 203): 393-396.
5 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
5 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
6 WU Guoxiong, MAO Jiangyu, DUAN Anmin, et al. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540.
6 吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 2004, 62(5): 528-540.
7 YAO Tandong, ZHU Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006, 21(5): 459-464.
7 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
8 YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
9 GAO Y H, CUO L, ZHANG Y X. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J]. Journal of Climate, 2014, 27(5): 1 876-1 893.
10 XU Y, GAO Y H. Quantification of evaporative sources of precipitation and its changes in the southeastern Tibetan Plateau and middle Yangtze River Basin[J]. Atmosphere, 2019, 10(8): 428.
11 XU X D, LU C G, SHI X H, et al. World water tower: an atmospheric perspective[J]. Geophysical Research Letters, 2008, 35(20): L20815.
12 LU C X, YU G, XIE G D. Tibetan Plateau serves as a water tower[C]// Proceedings of 2005 IEEE international geoscience and remote sensing symposium. IGARSS ' 05. Seoul. IEEE,2005: 3 120-3 123.
13 GIMENO L, STOHL A, TRIGO R M, et al. Oceanic and terrestrial sources of continental precipitation[J]. Reviews of Geophysics, 2012, 50(4): RG4003.
14 MA Y Z, ZHANG Y S, YANG D Q, et al. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region[J]. International Journal of Climatology, 2015, 35(7): 1 201-1 211.
15 WANG X J, PANG G J, YANG M X. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3): 1 116-1 131.
16 DONG W H, LIN Y L, WRIGHT J S, et al. Indian monsoon low-pressure systems feed up-and-over moisture transport to the southwestern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(22): 12 140-12 151.
17 DAVIS M E, THOMPSON L G, YAO T D, et al. Forcing of the Asian monsoon on the Tibetan Plateau: evidence from high-resolution ice core and tropical coral records[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D4): D04101.
18 DUAN Anmin, XIAO Zhixiang, WU Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Climate Change Research, 2016, 12(5): 374-381.
18 段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.
19 SHEN M G, PIAO S L, CONG N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10): 3 647-3 656.
20 TANG Qiuhong. Global change hydrology: terrestrial water cycle and global chang[J]. Scientia Sinica (Terrae), 2020, 50(3): 436-438.
20 汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020, 50(3): 436-438.
21 CHEN B, XU X D, YANG S, et al. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau[J]. Theoretical and Applied Climatology, 2012, 110(3): 423-435.
22 CURIO J, MAUSSION F, SCHERER D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015, 6(1): 109-124.
23 XU X, ZHAO T, LU C, et al. An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11 287-11 295.
24 YOU Q L, MIN J Z, ZHANG W, et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J]. Climate Dynamics, 2015, 45(3/4): 791-806.
25 DONG W, LIN Y, WRIGHT J S, et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J]. Nature Communications, 2016, 7: 10925.
26 FENG L, ZHOU T J. Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D20): D20114.
27 LI Shengchen, LI Dongliang, ZHAO Ping, et al. The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinghai-Xizang Plateau[J]. Acta Meteorologica Sinica, 2009, 67(4): 591-598.
27 李生辰, 李栋梁, 赵平, 等. 青藏高原“三江源地区”雨季水汽输送特征[J]. 气象学报, 2009, 67(4): 591-598.
28 WANG Keli, JIANG Hao, ZHAO Hongyan. Atmospheric water vapor transport from westerly and monsoon over the Northwest China[J]. Advances in Water Science, 2005, 16(3): 432-438.
28 王可丽, 江灏, 赵红岩. 西风带与季风对中国西北地区的水汽输送[J]. 水科学进展, 2005, 16(3): 432-438.
29 WANG Meiyue, WANG Lei, LI Xiehui, et al. Study on water vapor transport source and path of rainstorm in Sanjiangyuan area[J]. Plateau Meteorology, 2022, 41(1): 68-78.
29 王美月, 王磊, 李谢辉, 等. 三江源地区暴雨的水汽输送源地及路径研究[J]. 高原气象, 2022, 41(1): 68-78.
30 ZHANG C, TANG Q H, CHEN D L, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
31 TIAN Lide, YAO Tandong, YU Wusheng, et al. Stable isotopes of precipitation and ice core on the Tibetan Plateau and moisture transports[J]. Quaternary Sciences, 2006, 26(2): 145-152.
31 田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录[J]. 第四纪研究, 2006, 26(2): 145-152.
32 XU Jianyu, WANG Huijuan, LI Hongyi. Preliminary simulation analysis of moisture budget over Qinghai-Xizang Plateau in summer[J]. Plateau Meteorology, 2014, 33(5): 1 173-1 181.
32 许建玉, 王慧娟, 李宏毅. 夏季青藏高原地区水汽收支的初步模拟分析[J]. 高原气象, 2014, 33(5): 1 173-1 181.
33 GIMENO L, VáZQUEZ M, EIRAS-BARCA J, et al. Recent progress on the sources of continental precipitation as revealed by moisture transport analysis[J]. Earth-Science Reviews, 2020, 201: 103070.
34 van der ENT R J, SAVENIJE H H G, SCHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9): W09525.
35 van der ENT R J, SAVENIJE H H G. Oceanic sources of continental precipitation and the correlation with sea surface temperature[J]. Water Resources Research, 2013, 49(7): 3 993-4 004.
36 SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 2[R]. Boulder, Colorado: U.S. National Center for Atmospheric Research, 2008.
37 TRENBERTH K E. Climate diagnostics from global analyses: conservation of mass in ECMWF analyses[J]. Journal of Climate, 1991, 4(7): 707-722.
38 HUANG Ronghui, ZHANG Zhenzhou, HUANG Gang, et al. Characteristics of the water vapor transport in east Asian monsoon region and its difference from that in south Asian monsoon region in summer[J]. Scientia Atmospherica Sinica, 1998, 22(4): 460-469.
38 黄荣辉, 张振洲, 黄刚, 等. 夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J]. 大气科学, 1998, 22(4): 460-469.
39 PAN X D, MA W Q, ZHANG Y, et al. Refined characteristics of moisture cycling over the inland river basin using the WRF model and the finer box model: a case study of the Heihe River Basin[J]. Atmosphere, 2021, 12(3): 399.
40 STOHL A, JAMES P. A Lagrangian analysis of the atmospheric branch of the global water cycle. part I: method description, validation, and demonstration for the August 2002 flooding in central Europe[J]. Journal of Hydrometeorology, 2004, 5(4): 656-678.
41 DRAXLER R R, HESS G S. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion on and deposition [J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
42 NIETO R, GIMENO L, TRIGO R M. A Lagrangian identification of major sources of Sahel moisture[J]. Geophysical Research Letters, 2006, 33(18): L18707.
43 SUN B, WANG H J. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China[J]. International Journal of Climatology, 2015, 35(9): 2 243-2 257.
44 STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2 059-2 077.
45 BRIMELOW J C, REUTER G W. Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River Basin[J]. Journal of Hydrometeorology, 2005, 6(4): 423-440.
46 MA Jingjin, GAO Xiaoqing. The transportation paths of water vapor and its relation to climate change over north China[J]. Plateau Meteorology, 2006, 25(5): 893-899.
46 马京津, 高晓清. 华北地区夏季平均水汽输送通量和轨迹的分析[J]. 高原气象, 2006, 25(5): 893-899.
47 LI Y P, SZETO K, STEWART R E, et al. A numerical study of the June 2013 flood-producing extreme rainstorm over southern Alberta[J]. Journal of Hydrometeorology, 2017, 18(8): 2 057-2 078.
48 van der ENT R J. A new view on the hydrological cycle over continents [D]. Delft: Delft University of Technology, 2014.
49 INSUA-COSTA D, MIGUEZ-MACHO G. A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm[J]. Earth System Dynamics, 2018, 9(1): 167-185.
50 RIOS-ENTENZA A, MIGUEZ-MACHO G. Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula[J]. Climate Dynamics, 2014, 42(11/12): 3 207-3 231.
51 KNOCHE H R, KUNSTMANN H. Tracking atmospheric water pathways by direct evaporation tagging: a case study for West Africa[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 345-12 358.
52 ARNAULT J, KNOCHE R, WEI J H, et al. Evaporation tagging and atmospheric water budget analysis with WRF: a regional precipitation recycling study for West Africa[J]. Water Resources Research, 2016, 52(3): 1 544-1 567.
53 RIOS-ENTENZA A, SOARES P M, TRIGO R M, et al. Moisture recycling in the Iberian Peninsula from a regional climate simulation: spatiotemporal analysis and impact on the precipitation regime [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 5 895-5 912.
54 DOMINGUEZ F, MIGUEZ-MACHO G, HU H. WRF with water vapor tracers: a study of moisture sources for the North American monsoon [J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927.
55 EIRAS-BARCA J, DOMINGUEZ F, HU H C, et al. Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool[J]. Earth System Dynamics, 2017, 8(4): 1 247-1 261.
56 GAO Y H, CHEN F, MIGUEZ-MACHO G, et al. Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF[J]. Climate Dynamics, 2020, 55(9/10): 2 921-2 937.
57 HREN M T, BOOKHAGEN B, BLISNIUK P M, et al. δ 18O and δD of streamwaters across the Himalaya and Tibetan Plateau: implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 20-32.
58 YAO T D, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ 18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
59 DEE S, NOONE D, BUENNING N, et al. SPEEDY-IER: a fast atmospheric GCM with water isotope physics[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(1): 73-91.
60 PFAHL S, WERNLI H, YOSHIMURA K. The isotopic composition of precipitation from a winter storm—a case study with the limited-area model COSMOiso [J]. Atmospheric Chemistry and Physics, 2012, 12(3): 1 629-1 648.
61 HURLEY J V, GALEWSKY J, WORDEN J, et al. A test of the advection-condensation model for subtropical water vapor using stable isotopologue observations from Mauna loa observatory, Hawaii[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D19): D19118.
62 GIMENO L, NIETO R, TRIGO R M, et al. Where does the Iberian peninsula moisture come from? An answer based on a Lagrangian approach[J]. Journal of Hydrometeorology, 2010, 11(2): 421-436.
63 TRENBERTH K E, GUILLEMOT C J. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses[J]. Climate Dynamics, 1998, 14(3): 213-231.
64 STOHL A, JAMES P. A Lagrangian analysis of the atmospheric branch of the global water cycle. part II: moisture transports between earth’s ocean basins and river catchments[J]. Journal of Hydrometeorology, 2005, 6(6): 961-984.
65 JIANG Zhihong, REN Wei, LIU Zhengyu, et al. Analysis of water vapor transport characteristics during the Meiyu over the Yangtze-Huaihe River valley using the Lagrangian method[J]. Acta Meteorologica Sinica, 2013, 71(2): 295-304.
65 江志红, 任伟, 刘征宇, 等. 基于拉格朗日方法的江淮梅雨水汽输送特征分析[J]. 气象学报, 2013, 71(2): 295-304.
66 WANG Jiajin, WANG Chunxue, CHEN Chaoping, et al. Analysis of a summer rainstorm water vapor paths and sources in Sichuan Basin based on HYSPLIT4 model[J]. Meteorological Monthly, 2015, 41(11): 1 315-1 327.
66 王佳津, 王春学, 陈朝平, 等. 基于HYSPLIT4的一次四川盆地夏季暴雨水汽路径和源地分析[J]. 气象, 2015, 41(11): 1 315-1 327.
67 ZHANG C, TANG Q H, CHEN D L. Recent changes in the moisture source of precipitation over the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1 807-1 819.
68 ZHANG C, TANG Q, CHEN D, et al. Moisture source changes contributed to different precipitation trends over the northern and southern Tibetan Plateau [J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
69 GAT J R, CARMI I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area[J]. Journal of Geophysical Research, 1970, 75(15): 3 039-3 048.
70 SALATI E, DALL’OLIO A, MATSUI E, et al. Recycling of water in the Amazon Basin: an isotopic study[J]. Water Resources Research, 1979, 15(5): 1 250-1 258.
71 ROZANSKI K, SONNTAG C, MüNNICH K O. Factors controlling stable isotope composition of European precipitation[J]. Tellus, 1982, 34(2): 142-150.
72 COPLEN T B, NEIMAN P J, WHITE A B, et al. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm[J]. Geophysical Research Letters, 2008, 35(21): L21808.
73 TIAN Lide, YAO Tandong, NUMAGUTI A, et al. Rainfall stable isotope fluctuation and the water vapor transport process in the southern Qinghai-Tibet Plateau monsoon[J]. Science in China Series D: Earth Sciences, 2001, 31(): 215-220.
73 田立德, 姚檀栋, NUMAGUTI A, 等. 青藏高原南部季风降水中稳定同位素波动与水汽输送过程[J]. 中国科学(D辑: 地球科学), 2001, 31(): 215-220.
74 ZHOU Changyan, TANG Xinying, LI Yueqing. Overview of the research on the water vapor and water vapor transport over the Tibetan Plateau and its surroundings[J]. Plateau and Mountain Meteorology Research, 2012, 32(3): 76-83.
75 XU Xiangde, CHEN Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772.
75 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
76 XU K, ZHONG L, MA Y M, et al. A study on the water vapor transport trend and water vapor source of the Tibetan Plateau[J]. Theoretical and Applied Climatology, 2020, 140: 1 031-1 042.
77 WANG Z Q, DUAN A M, YANG S, et al. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2): 614-630.
78 YANG K, TANG Q H, LU H. Precipitation recycling ratio and water vapor sources on the Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(3): 584-588.
79 YANG Xiaoxin. Water stable isotopes and their applications to the study of atmospheric circulations on the Tibetan Plateau[J]. Advances in Earth Science, 2022, 37(1): 87-98.
79 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
80 LI Xiucang, JIANG Tong, WU Ping. Progress and prospect of the moisture recycling models[J]. Advances in Earth Science, 2020, 35(10): 1 029-1 040.
80 李修仓, 姜彤, 吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1 029-1 040.
81 XU Jianmin, ZHENG Xinjiang, XU Huan, et al. Upper tropospheric moisture distribution over the Tibetan Plateau as revealed from GMS-5 water vapour images [J]. Journal of Applied Meteorological Science, 1996, 7(2): 246-251.
81 许健民, 郑新江, 徐欢, 等. GMS-5水汽图象所揭示的青藏高原地区对流层上部水汽分布特征 [J]. 应用气象学报, 1996, 7(2): 246-251.
82 XIE Xinru, YOU Qinglong, BAO Yuntao, et al. The connection between the precipitation and water vapor transport over Qinghai-Tibetan Plateau in summer based on the multiple datasets[J]. Plateau Meteorology, 2018, 37(1): 78-92.
82 谢欣汝, 游庆龙, 保云涛, 等. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1): 78-92.
83 LI Y, SU F G, CHEN D L, et al. Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(23): 12 864-12 881.
文章导航

/