河西走廊不同强度槽型沙尘暴垂直动量传输特征分析
收稿日期: 2022-01-20
修回日期: 2022-07-24
网络出版日期: 2022-09-28
基金资助
国家自然科学基金面上项目“河西地区高层大气向边界层动量下传对强沙尘暴的影响机制”(41975015)
Analysis of the Vertical Momentum Transmission Characteristics of Different Intensity Trough Type Sandstorm Along the Hexi Corridor, China
Received date: 2022-01-20
Revised date: 2022-07-24
Online published: 2022-09-28
Supported by
the National Natural Science Foundation of China “Influence mechanism of momentum downward propagation from upper atmosphere to boundary layer on strong sandstorms over Hexi area”(41975015)
利用河西走廊13个气象站逐时地面气象观测资料和MICAPS高低空资料,对该区2010年4月24~25日、2014年4月23~24日和2018年4月4日3次不同强度槽型沙尘暴过程垂直动量特征进行诊断分析,得到槽型沙尘暴的垂直动量传输特征,更好地为槽型沙尘暴的精细化网格预报预警提供有力技术支撑,增强大风强沙尘暴的防灾减灾能力。结果表明:300 hPa极锋急流是造成河西走廊地区槽型沙尘暴的主要高空动力系统,大风沙尘暴出现在高空偏西风急流(≥32 m/s)、中空急流(≥20 m/s)和低空急流(≥12 m/s)附近。沙尘暴前期,近地层大气干热,当高空冷空气侵入,与中低层暖空气进行剧烈交换,在边界层形成不稳定层结;高空槽后冷空气下沉(冷平流中心强度小于等于-10×10-5 K/s),将强风迅速向下传递到地面产生大风;槽前高空急流加强垂直动力抽吸,深厚的辐合辐散区与地面冷锋增强上升运动,最大上升速度位于500 hPa,强度小于等于-30×10-5 Pa/s。沙尘暴区距离高空急流轴中心位置越近,辐合辐散中心差值越大、垂直距离越近,辐合中心位置越低,对流性不稳定层结越厚、所处高度越低,冷平流中心强度越强,最大上升速度区与冷平流中心距离越近,沙尘暴强度越强、持续时间越长;300 hPa高空急流轴中心控制河西走廊地区的范围越广,沙尘暴出现范围越大。
张春燕 , 李岩瑛 , 马幸蔚 , 李晓京 , 聂鑫 . 河西走廊不同强度槽型沙尘暴垂直动量传输特征分析[J]. 地球科学进展, 2022 , 37(9) : 925 -936 . DOI: 10.11867/j.issn.1001-8166.2022.052
Hourly surface meteorological observation data from 13 weather stations along the Hexi Corridor, China, and MICAPS high- and low-air data were used to analyze the vertical structure characteristics of trough-type strong sandstorm weather over the Hexi Corridor on April 24~25, 2010, April 23~24, 2014, and April 4, 2018. The results show that the polar front jet at 300 hPa is the main upper air dynamic system causing trough sandstorms in the Hexi Corridor area. Gale sandstorms appear near the upper-air westerly jet (≥32 m/s), hollow jet (≥20 m/s), and low-level jet (≥12 m/s). In the early stages of a sandstorm, the surface layer air is dry and hot. Then, the cold air invades, resulting in a violent exchange between the cold and warm air, which leads to the formation of an unstable layer junction in the boundary layer. The cold air sinks after the high trough (the central strength of cold current less than or equal to -10×10-5 K/s), which rapidly transfers the strong wind down to the ground and generates strong winds. The upper-level jet in front of the trough strengthens the vertical dynamic pumping, and the deep convergence and divergence zones and the surface cold front enhance the upward movement. The maximum upward velocity was observed at 500 hPa and its intensity was less than or equal to -30×10-5 Pa/s. The closer the sandstorm is to the center of the jet stream axis, the greater the difference in convergence and divergence centers. The closer the vertical distance, the lower the convergence center position, the thicker the convectional unstable stratification, the lower the height, the stronger the intensity of the cold advection center, and the rising speed area reaches a maximum. The nearer the cold advection is to the center distance, the stronger the sandstorm and the longer the duration. The wider the center, the more the 300 hPa upper-level jet axis controls the Hexi corridor area and the wider the sandstorm appears.
1 | ZHANG Zhengcai, PAN Kaijia, LIANG Aimin, et al. Progress on process and mechanism of sand and dust emission on Gobi[J]. Advances in Earth Science, 2019, 34(9): 891-900. |
1 | 张正偲, 潘凯佳, 梁爱民, 等. 戈壁沙尘释放过程与机理研究进展[J]. 地球科学进展, 2019, 34(9): 891-900. |
2 | LI Lingping, LI Yanying, LI Xiaojing, et al. Characteristics of circulation and dynamic of the different cold front sandstorm processes in Hexi Corridor[J]. Journal of Desert Research, 2021, 41(5): 219-228. |
2 | 李玲萍, 李岩瑛, 李晓京, 等. 河西走廊不同强度冷锋型沙尘暴环流和动力特征[J]. 中国沙漠, 2021, 41(5): 219-228. |
3 | NKOSI V, MATHEE A, BLESIC S, et al. Exploring meteorological conditions and human health impacts during two dust storm events in northern Cape Province, South Africa: findings and lessons learnt[J]. Atmosphere, 2022, 13(3): 424. |
4 | GAROFALIDE S, POSTOLACHI C, COCEAN A, et al. Saharan dust storm aerosol characterization of the event (9 to 13 May 2020) over European AERONET sites[J]. Atmosphere, 2022, 13(3): 493. |
5 | MALEKI H, SOROOSHIAN A, ALAM K, et al. The impact of meteorological parameters on PM10 and visibility during the Middle Eastern dust storms[J]. Journal of Environmental Health Science and Engineering, 2022, 20(1): 495-507. |
6 | SAHA S, SHARMA S, CHHABRA A, et al. Impact of dust storm on the atmospheric boundary layer: a case study from western India[J]. Natural Hazards, 2022, 113(1): 143-155. |
7 | YANG Xiaojun, ZHANG Qiang, YE Peilong, et al. Characteristics and causes of persistent sand-dust weather in mid-March 2021 over Northern China[J]. Journal of Desert Research, 2021, 41(3): 245-255. |
7 | 杨晓军, 张强, 叶培龙, 等. 中国北方2021年3月中旬持续性沙尘天气的特征及其成因[J]. 中国沙漠, 2021, 41(3): 245-255. |
8 | LI Na, MIN Yue, TANG Hao, et al. Analyzing the dynamic structural characteristics of the severe sandstorm caused by cold air crossing mountains in Southern Xinjiang on April 23rd, 2014[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 792-800. |
8 | 李娜, 闵月, 汤浩, 等. “4·23”南疆翻山型强沙尘暴动力结构特征分析[J]. 冰川冻土, 2017, 39(4): 792-800. |
9 | WANG Minzhong, WEI Wenshou, YANG Lianmei, et al. Analysis on circulation dynamical structure of a strong sand-dust storm case from east in Tarim Basin[J]. Journal of Desert Research, 2008, 28(2): 370-376. |
9 | 王敏仲, 魏文寿, 杨莲梅, 等. 塔里木盆地一次东灌型沙尘暴环流动力结构分析[J]. 中国沙漠, 2008, 28(2): 370-376. |
10 | BANERJEE P, SATHEESH S K, MOORTHY K K. The unusual severe dust storm of may 2018 over northern India: genesis, propagation, and associated conditions[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD032369. |
11 | CHENG Haixia, DING Zhiying, SHUAI Kejie, et al. Statistic character and dynamic analysis of upper level jet streams on sandstorm days[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(6): 806-814. |
11 | 程海霞, 丁治英, 帅克杰, 等. 沙尘暴天气的高空急流统计特征及动力学分析[J]. 南京气象学院学报, 2006, 29(6): 806-814. |
12 | PAULEY P M, BAKER N L, BARKER E H. An observational study of the “interstate 5” dust storm case[J]. Bulletin of the American Meteorological Society, 1996, 77(4): 693-720. |
13 | He Yuanping, ZHANG Yunwei, GU Zhaolin.Research progress and prospect of the characteristics and triggering mechanism of extra-strong sandstorm disaster weather[J]. China Environmental Science, 2021,41(8):3 511-3 522. |
13 | 贺沅平,张云伟,顾兆林.特强沙尘暴灾害性天气的研究及展望[J].中国环境科学,2021,41(8):3 511-3 522. |
14 | LI Hanlin, HE Qing, JIN Lili. Wind profile characteristics of near-surface layer under typical weather conditions in the hinterland and northern margin of Taklimakan desert[J]. Journal of Arid Meteorology, 2020, 38(6): 965-978. |
14 | 李汉林, 何清, 金莉莉. 塔克拉玛干沙漠腹地和北缘典型天气近地层风速廓线特征[J]. 干旱气象, 2020, 38(6): 965-978. |
15 | WEI Qian, LONG Xiao, ZHAO Jianhua, et al. Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China[J]. Arid Zone Research, 2021, 38(1): 163-177. |
15 | 魏倩, 隆霄, 赵建华, 等. 边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究[J]. 干旱区研究, 2021, 38(1): 163-177. |
16 | ZHAO Cuiguang, LIU Huanzhu. Analysis of circulation situation occurring sandstorm in the northern China[J]. Quarterly Journal of Applied Meteorology, 2004, 15(2): 245-250. |
16 | 赵翠光, 刘还珠. 我国北方沙尘暴发生的环流形势分析[J]. 应用气象学报, 2004, 15(2): 245-250. |
17 | WU Zhongxun, WANG Shigong, SHANG Kezheng, et al. The characteristics of momentum transfer during a cold strong wind process[J]. Journal of Desert Research, 2016, 36(2): 467-473. |
17 | 邬仲勋, 王式功, 尚可政, 等. 冷空气大风过程中动量下传特征[J]. 中国沙漠, 2016, 36(2): 467-473. |
18 | LI Yanying, XU Dongbei, CHEN Ying. The turning causes of trough to ridge in a typical black sandstorm process occurred in north-west China[J]. Journal of Desert Research, 2013, 33(1): 187-194. |
18 | 李岩瑛, 许东蓓, 陈英. 典型槽型转脊型黑风天气过程成因分析[J]. 中国沙漠, 2013, 33(1): 187-194. |
19 | DONG Anxiang, HU Wenchao, ZHANG Yu, et al. Study of the relationship between gale and the peculiar terrain in the Hexi Corridor[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 347-351. |
19 | 董安祥, 胡文超, 张宇, 等. 河西走廊特殊地形与大风的关系探讨[J]. 冰川冻土, 2014, 36(2): 347-351. |
20 | PAULEY P M, BAKER N L, BARKER E H. An observational study of the “interstate 5” dust storm case[J].Bulletin American Methematical Society,1996,77:693-719. |
21 | BO T L. The effect of turbulent motions on the transport of dust and heat in the development stage of dust storms induced by cold front[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212: 104604. |
22 | HUO J, CHEN Y C, LYU D R. Thermodynamic and dynamic behavior in a recent dust precipitation event in North China[J]. Atmospheric Pollution Research, 2021, 12(3): 307-320. |
23 | LI W Y. Statistical quantification of the local daily surface meteorological condition’s impact properties on dust storm occurrence: style, intensity, significance, contribution, and decisiveness, taking north and northwest China as an example[J]. Theoretical and Applied Climatology, 2021, 143(1/2): 403-428. |
24 | XU C Q, GUAN Q Y, LIN J K, et al. Spatiotemporal variations and driving factors of dust storm events in Northern China based on high-temporal-resolution analysis of meteorological data (1960-2007)[J]. Environmental Pollution, 2020, 260: 114084. |
25 | SUN Yonggang, MENG Xuefeng, XUN Xueyi, et al. Difference analysis of temperature advection in severe sandstorm and strong wind prediction[J]. Meteorological Monthly, 2014, 40(11): 1 302-1 307. |
25 | 孙永刚, 孟雪峰, 荀学义, 等. 温度平流在沙尘暴和大风天气预报中的差异分析[J]. 气象, 2014, 40(11): 1 302-1 307. |
/
〈 |
|
〉 |