SHUD数值方法分布式水文模型介绍
收稿日期: 2022-01-12
修回日期: 2022-06-16
网络出版日期: 2022-07-21
基金资助
中国科学院“百人计划”“数值方法水文模型”(E0290304);国家自然科学基金项目“气候变化背景下三江源区域水循环演变过程及机理研究”(41930759);青海省防灾减灾重点实验室开放基金重点项目“布哈河流域径流变化及水循环机理研究”(QFZ-2021-Z02)
A Brief Review of Numerical Distributed Hydrological Model SHUD
Received date: 2022-01-12
Revised date: 2022-06-16
Online published: 2022-07-21
Supported by
the Chinese Academy 100-Talent Program “Numerical hydrological model”(E0290304);The National Natural Science Foundation of China “The evolution of hydrological cycle and its mechanism under the climate change on the Sanjiangyuan region in China”(41930759);The Open Fund of Qinghai Key Laboratory of Disaster Prevention “Streamflow change and hydrological mechanism in Buha River”(QFZ-2021-Z02)
水文模型是高效且经济的科学实验工具,不仅能结合观测数据验证科学理论、指导观测网络布设,而且对社会水资源管理、灾害防治以及经济决策等有不可或缺的重要价值。数值方法水文模型依据达西定律、理查兹方程和圣维南方程等水文物理公式,充分表现水文参数空间异质性,精细化表达水文物理过程,是水文模型发展的重要方向之一。SHUD模型利用有限体积法求解地表—地下耦合的流域水文过程,采用不规则三角网构成流域模拟空间,可实现空间上米—公里、时间上秒—小时的超高分辨率的数值模拟。由SHUD模型、rSHUD工具和全球基础地理数据组成的AutoSHUD水文模拟系统,构建了数据制备—模型模拟—结果分析的标准范式,其有效性和适用性已得到验证。当前我国水文领域对于数值方法分布式水文模型的探讨、开发和应用较为薄弱,亟需更多探索;不仅需要支持新模型的研发,同时应丰富已有模型在全球不同区域的验证、推广和改进工作。
舒乐乐 , 常燕 , 王建 , 陈昊 , 李照国 , 赵林 , 孟宪红 . SHUD数值方法分布式水文模型介绍[J]. 地球科学进展, 2022 , 37(7) : 680 -691 . DOI: 10.11867/j.issn.1001-8166.2022.025
Hydrological models are efficient and economical tools for conducting scientific studies. They are not only useful in validating scientific theories and guiding the deployment of observation networks, but they also play an indispensable role in facilitating decision-making within socioeconomic spheres such disaster prevention and mitigation. Distributed hydrological modelling via numerical methods entail the application of hydrological equations to express the spatial heterogeneity of hydrological parameters at a fine-scale. This fine-scale analysis allows for a detailed characterization of hydrological processes, which is a critical step within the context of developing robust hydrological models. The SHUD model adopts the finite volume method to resolve integrated surface-subsurface hydrological processes. The model uses an irregular triangular network, which can rapidly realize an ultra-high-resolution numerical simulation (i.e., from meters to kilometers). The AutoSHUD automated hydrological simulation system, which consists of the SHUD model, rSHUD tool, and global essential terrestrial data, can facilitate pre- and post-processing of the model and has been applied to several research projects; hence, the validity and applicability of the model have been verified. At present, the exploration, development, and application of distributed hydrological models by numerical methods are limited in our hydrological community, and there is an urgent need for more original research in this field. The global development of new models as well as the validation, promotion, and improvement of existing models is a worthwhile goal.
Key words: Hydrological model; Distributed model; Numerical method; SHUD model
1 | BEVEN K. Rainfall-Runoff modelling: the primer [M]. second edition. Chichester, UK: John Wiley & Sons, Inc., 2012. |
2 | XU Zongxue. Hydrological models[M].Beijing:Science Press,2009. |
2 | 徐宗学.水文模型[M].北京:科学出版社,2009. |
3 | JIA Yangwen, WANG Hao, NI Guangheng. Principle and practice of distributed watershed hydrological model [M]. Beijing:China Water & Power Press,2005. |
3 | 贾仰文,王浩,倪广恒.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005. |
4 | PEEL M C, MCMAHON T A. Historical development of rainfall-runoff modeling[J]. Wiley Interdisciplinary Reviews: Water, 2020, 7(5): e1471. |
5 | CLARK M P, KAVETSKI D, FENICIA F. Pursuing the method of multiple working hypotheses for hydrological modeling[J]. Water Resources Research, 2011, 47(9): W09301. |
6 | HRACHOWITZ M, CLARK M P. HESS opinions: the complementary merits of competing modelling philosophies in hydrology[J]. Hydrology and Earth System Sciences, 2017, 21(8): 3 953-3 973. |
7 | THOMPSON S E, SIVAPALAN M, HARMAN C J, et al. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene[J]. Hydrology and Earth System Sciences, 2013, 17(12): 5 013-5 039. |
8 | PANICONI C, PUTTI M. Physically based modeling in catchment hydrology at 50: survey and outlook[J]. Water Resources Research, 2015, 51(9): 7 090-7 129. |
9 | MAXWELL R M, CONDON L E, KOLLET S J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3[J]. Geoscientific Model Development, 2015, 8(3): 923-937. |
10 | VALLIS G K. Geophysical fluid dynamics: whence,whither and why?[J]. Proceedings of the Royal Society A—Mathematical Physical and Engineering Sciences,2016,472(2 192):20160140. |
11 | SIVAPALAN M, BL?SCHL G. Time scale interactions and the coevolution of humans and water[J]. Water Resources Research,2015,51(9): 6 988-7 022. |
12 | SHEN C P, PHANIKUMAR M S. A process-based,distributed hydrologic model based on a large-scale method for surface-subsurface coupling[J]. Advances in Water Resources,2010,33(12): 1 524-1 541. |
13 | HAQUE A, SALAMA A, LO K, et al. Surface and groundwater interactions: a review of coupling strategies in detailed domain models[J]. Hydrology, 2021, 8(1): 35. |
14 | FREEZE R A, HARLAN R L. Blueprint for a physically-based, digitally-simulated hydrologic response model[J]. Journal of Hydrology, 1969, 9(3): 237-258. |
15 | MAXWELL R M, PUTTI M, MEYERHOFF S, et al. Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2014, 50(2): 1 531-1 549. |
16 | QU Y Z, DUFFY C J. A semidiscrete finite volume formulation for multiprocess watershed simulation[J]. Water Resources Research, 2007, 43(8): W08419. |
17 | BIXIO A C, GAMBOLATI G, PANICONI C, et al. Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone[J]. Environmental Geology, 2002, 42(2/3): 162-177. |
18 | AQUANTY I. HydroGeoSphere user manual[R]. Waterloo,Ontario, 2013. |
19 | DELFS J O, PARK C H, KOLDITZ O. A sensitivity analysis of Hortonian flow[J]. Advances in Water Resources, 2009, 32(9): 1 386-1 395. |
20 | KOLLET S J, MAXWELL R M. Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources, 2006, 29(7): 945-958. |
21 | IVANOV V Y, VIVONI E R, BRAS R L, et al. Catchment hydrologic response with a fully distributed triangulated irregular network model[J]. Water Resources Research, 2004, 40(11): W11102. |
22 | REFSGAARD J C, STORM B. MIKE SHE[G]// Computer models of watershed hydrology. 1995: 809-846. |
23 | REFSGAARD J C. Parameterisation, calibration and validation of distributed hydrological models[J]. Journal of Hydrology, 1997, 198(1/2/3/4): 69-97. |
24 | SHU L L, ULLRICH P A, DUFFY C J. Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method[J]. Geoscientific Model Development, 2020, 13(6): 2 743-2 762. |
25 | DUFFY C J. A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain[J]. Water Resources Research, 1996, 32(8): 2 421-2 434. |
26 | COBOURN K M, CAREY C C, BOYLE K J,et al. From concept to practice to policy: modeling coupled natural and human systems in lake catchments[J]. Ecosphere,2018,9(5):e02209. |
27 | WARD N K, FITCHETT L, HART J A, et al. Integrating fast and slow processes is essential for simulating human-freshwater interactions[J]. Ambio, 2019, 48(10): 1 169-1 182. |
28 | GIL Y, GARIJO D, KHIDER D, et al. Artificial intelligence for modeling complex systems: taming the complexity of expert models to improve decision making[J]. ACM Transactions on Interactive Intelligent Systems, 2021, 11(2): 1-49. |
29 | GARIJO D, KHIDER D, RATNAKAR V,et al. An intelligent interface for integrating climate,hydrology,agriculture,and socioeconomic models[C]// Proceedings of the 24th international conference on intelligent user interfaces: companion. New York,NY,USA: Association for Computing Machinery,2019:111-112. |
30 | LADWIG R, HANSON P C, DUGAN H A, et al. Lake thermal structure drives interannual variability in summer Gnoxia dynamics in a eutrophic lake over 37 years[J]. Hydrology and Earth System Sciences, 2021, 25(2): 1 009-1 032. |
31 | KOLLET S, SULIS M, MAXWELL R M, et al. The integrated hydrologic model intercomparison project, IH-MIP2: a second set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research, 2017, 53(1): 867-890. |
32 | BROWN P N, HINDMARSH A C. Reduced storage matrix methods in stiff ODE systems[J]. Applied Mathematics and Computation, 1989, 31: 40-91. |
33 | COURANT R, FRIEDRICHS K, LEWY H. über die partiellen differenzengleichungen der mathematischen physik[J]. Mathematische Annalen, 1928, 100(1): 32-74. |
34 | ARNOLD J G, FOHRER N. SWAT2000: current capabilities and research opportunities in applied watershed modelling[J]. Hydrological Processes, 2005, 19(3): 563-572. |
35 | SHI Y N, DAVIS K J, DUFFY C J, et al. Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory[J]. Journal of Hydrometeorology, 2013, 14(5): 1 401-1 420. |
36 | SHI Y N, BALDWIN D C, DAVIS K J, et al. Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model[J]. Hydrological Processes, 2015, 29(21): 4 624-4 637. |
37 | BAO C, LI L, SHI Y N, et al. Understanding watershed hydrogeochemistry: 1. development of RT-flux-PIHM[J]. Water Resources Research, 2017, 53(3): 2 328-2 345. |
38 | LI L, BAO C, SULLIVAN P L, et al. Understanding watershed hydrogeochemistry: 2. synchronized hydrological and geochemical processes drive stream chemostatic behavior[J]. Water Resources Research, 2017, 53(3): 2 346-2 367. |
39 | YU X, XU Z X, MORAETIS D, et al. Capturing hotspots of fresh submarine groundwater discharge using a coupled surface-subsurface model[J]. Journal of Hydrology, 2021, 598: 126356. |
40 | ZHANG Y, SLINGERLAND R, DUFFY C. Fully-coupled hydrologic processes for modeling landscape evolution[J]. Environmental Modelling & Software, 2016, 82: 89-107. |
41 | SHI Y N, EISSENSTAT D M, HE Y T, et al. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a critical zone observatory[J]. Ecological Modelling, 2018, 380: 8-21. |
42 | VAUCLIN M, KHANJI D, VACHAUD G. Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[J]. Water Resources Research, 1979, 15(5): 1 089-1 101. |
43 | W?STEN J H M, PACHEPSKY Y A, RAWLS W J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics[J]. Journal of Hydrology, 2001, 251(3/4): 123-150. |
44 | HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation[C]// Proceedings of IEEE international conference on evolutionary computation. IEEE,1996:312-317. |
45 | AUGER A, HANSEN N. A restart CMA evolution strategy with increasing population size[J]. IEEE Congress on Evolutionary Computation, 2005, 2: 1 769-1 776. |
46 | SHU L L. Impacts of urbanization and climate change on the hydrological cycle: a study in modern and ancient land use change[D]. Central County: The Pennsylvnia State University,2017. |
47 | DUAN S H, ULLRICH P, SHU L L. Using convolutional neural networks for streamflow projection in California[J]. Frontiers in Water, 2020, 2: 28. |
48 | KUFFOUR B N O, ENGDAHL N B, WOODWARD C S, et al. Simulating coupled surface-subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model[J]. Geoscientific Model Development, 2020, 13(3): 1 373-1 397. |
49 | MAXWELL R M, MILLER N L. Development of a coupled land surface and groundwater model[J]. Journal of Hydrometeorology, 2005, 6(3): 233-247. |
50 | GILBERT J M, JEFFERSON J L, CONSTANTINE P G, et al. Global spatial sensitivity of runoff to subsurface permeability using the active subspace method[J]. Advances in Water Resources, 2016, 92: 30-42. |
/
〈 |
|
〉 |