太行山地形影响其东麓强对流系统触发、发展、移动路径的个例分析
收稿日期: 2022-01-23
修回日期: 2022-02-22
网络出版日期: 2022-05-31
基金资助
中国长江三峡集团有限公司项目“三峡工程成库以来阶段性气候效应评估”(0704182);国家自然科学基金项目“高空外流特征及对热带气旋强度与强度变化的影响”(41775058)
Influence of the Taihang Mountains on the Initiation, Development, and Track of a Convective Precipitation System
Received date: 2022-01-23
Revised date: 2022-02-22
Online published: 2022-05-31
Supported by
the China Yangtze River Three Gorges Group Company Limited “Assessment of the climatic effects of the Three Gorges Project”(0704182);The National Natural Science Foundation of China “Structure and the impact on tropical cyclone intensity and intensity change”(41775058)
2017年5月22日,受500 hPa高空槽、850 hPa切变线、地面冷锋,以及中尺度辐合线的共同作用,一次较强的对流性降水过程发生在太行山东坡200~800 m 海拔高度区域。利用高分辨率的WRF数值模式,重点分析了太行山地形对对流系统触发、发展、移动路径的影响。研究发现山脉—平原的陆面分布在日辐射的作用下,能够在特定的地形结构处形成气候场上的地形辐合区。此地形辐合区在冷锋系统的动力抬升作用下形成了更强的地形辐合带,从而促进了对流单体群在此地形辐合带中的触发。研究还发现,对流单体群均是沿着地形走向移动,其移动路径均在山脉坡度较大的位置。对流系统的强度变化与太行山东部的山脉—平原环流系统密切相关。一方面,山脉—平原环流系统的近地层东风异常与太行山脉东麓地形相耦,增强了太行山山脚附近对流发展的动力抬升作用;另一方面,东风气流增强了来自东部平原地区的水汽输送。暖湿气流在地形抬升和山脉—平原环流系统上升支的共同作用下,增强了对流单体的降水强度。研究认为太行山东坡上对流系统的触发、发展、移动均与局地地形的坡度、坡向存在密切关系。能够增进对太行山东坡强对流天气的理解,为其短时强降水预报提供理论参考。
李艳 , 王玉 , 陈鲜艳 . 太行山地形影响其东麓强对流系统触发、发展、移动路径的个例分析[J]. 地球科学进展, 2022 , 37(5) : 472 -483 . DOI: 10.11867/j.issn.1001-8166.2022.026
On May 22, 2017, strong convective precipitation occurred at an elevation of 200-800 m on the foot of the Taihang Mountains, which was controlled by a 500-hPa cold trough, 850-hPa shear line, cold front, and mesoscale convergence line. The effects of topography on the initiation, development, and tracking of convective systems were analyzed based on the results of high-resolution numerical simulations using the WRF model. The results show that a topographic convergence zone was formed under the influence of solar radiation on the mountain-plain land surface. The cold front strengthened the topographic convergence zone and triggered convective clusters from the convergence zone. The results also showed that the convective clusters moved along the orientation of the local topography, where the local slope was steeper. The intensity of the convective clusters was closely related to the Mountain-Plains Solenoid (MPS) on the east side of the Taihang Mountains. First, the low-level easterly anomaly of the MPS coupled with the local terrain enhanced uplift near the foot of the Taihang Mountains. Second, the easterly flow intensified the water vapor transportation from the eastern plain. The large amount of water vapor carried by the MPS-induced easterly wind was forced to ascend due to topographic obstruction; therefore, convective cells developed. The results suggest that the slope gradient and slope aspect of the local terrain played a key role in the initiation, maintenance, as well as the track of the convective clusters along the eastern foothills of the Taihang Mountains. This analysis contributes to the understanding of the development of convective precipitation systems on the eastern slope of the Taihang Mountains and forecasting short-term heavy rainfall events.
Key words: Taihang Mountains; Convective system; Initiation; Development; Track.
1 | ZHANG H, ZHAI P M. Temporal and spatial characteristics of extreme hourly precipitation over Eastern China in the warm season[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1 177-1 183. |
2 | LUO Y L, WU M W, REN F M, et al. Synoptic situations of extreme hourly precipitation over China[J]. Journal of Climate, 2016, 29(24): 8 703-8 719. |
3 | LUO Y L, SUN J S, LI Y, et al. Science and prediction of heavy rainfall over China: research progress since the reform and opening-up of new China[J]. Journal of Meteorological Research, 2020, 34(3): 427-459. |
4 | TAO Shiyan. The heavy rain of China[M]. Beijing: Science Press, 1980. |
4 | 陶诗言.中国之暴雨[M].北京:科学出版社,1980. |
5 | GAO Shouting, ZHOU Yushu, RAN Lingkun. A review on the formation mechanisms and forecast methods for torrential rain in China[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 833-846. |
5 | 高守亭, 周玉淑, 冉令坤. 我国暴雨形成机理及预报方法研究进展[J]. 大气科学, 2018, 42(4): 833-846. |
6 | YU X D, ZHENG Y G. Advances in severe convection research and operation in China[J]. Journal of Meteorological Research, 2020, 34(2): 189-217. |
7 | CHEN Mingxuan, WANG Yingchun, XIAO Xian, et al. Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012[J]. Acta Meteorologica Sinica, 2013, 71(4): 569-592. |
7 | 陈明轩, 王迎春, 肖现, 等. 北京“7.21”暴雨雨团的发生和传播机理[J]. 气象学报, 2013, 71(4): 569-592. |
8 | WANG Jianhong, ZHANG Meng, REN Shuyuan, et al. Simulation study on the impact of Taihang Mountain slopes on downhill front cyclone rainstorm[J]. Advances in Earth Science, 2019, 34(7): 717-730. |
8 | 王坚红, 张萌, 任淑媛, 等. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730. |
9 | YUAN W H, SUN W, CHEN H M, et al. Topographic effects on spatiotemporal variations of short-duration rainfall events in warm season of central North China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11 223-11 234. |
10 | ZHAI Panmao, NI Yunqi, CHEN Yang. Mechanism and forecasting method of persistent extreme weather events: review and prospect[J]. Advances in Earth Science, 2013, 28(11): 1 177-1 188. |
10 | 翟盘茂, 倪允琪, 陈阳. 我国持续性重大天气异常成因与预报方法研究回顾与未来展望[J]. 地球科学进展, 2013, 28(11): 1 177-1 188. |
11 | MA R Y, SUN J H, YANG X L. An eight-year climatology of the warm-season severe thunderstorm environments over North China[J]. Atmospheric Research, 2021, 254: 105519. |
12 | ZHOU T J, SONG F F, LIN R P, et al. The 2012 North China floods: explaining an extreme rainfall event in the context of a longer-term drying tendency[J]. Bulletin of the American Meteorological Society, 2013, 94(9): S49-S51. |
13 | SUN Jianhua, ZHAO Sixiong, FU Shenming, et al. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(3): 705-718. |
13 | 孙建华, 赵思雄, 傅慎明, 等. 2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 2013, 37(3): 705-718. |
14 | XIA R D, ZHANG D L. An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang Mountains in North China[J]. Monthly Weather Review, 2019, 147(11): 4 199-4 220. |
15 | SUN W, LI J, YU R C, et al. Two major circulation structures leading to heavy summer rainfall over central North China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10):4 466-4 482. |
16 | LI H Q, CUI X P, ZHANG D L. A statistical analysis of hourly heavy rainfall events over the Beijing metropolitan region during the warm seasons of 2007-2014[J]. International Journal of Climatology, 2017, 37(11):4 027-4 042. |
17 | KANG Y Z, PENG X D, WANG S G, et al. Statistical characteristics and synoptic situations of long-duration heavy rainfall events over North China[J]. Earth and Space Science, 2020, 7(5): e2019EA000923. |
18 | PAN H, CHEN G X. Diurnal variations of precipitation over North China regulated by the mountain-Plains solenoid and boundary-layer inertial oscillation[J]. Advances in Atmospheric Sciences, 2019, 36(8): 863-884. |
19 | WANG C X, GAO S T, LIANG L, et al. Multi-scale characteristics of moisture transport during a rainstorm process in North China[J]. Atmospheric Research, 2014, 145/146: 189-204. |
20 | ZHANG D L, LIN Y H, ZHAO P, et al. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons[J]. Geophysical Research Letters, 2013, 40(7):1 426-1 431. |
21 | LEI Lei, XING Nan, ZHOU Xuan, et al. A study on the warm-sector torrential rainfall during 15-16 July 2018 in Beijing area[J]. Acta Meteorologica Sinica, 2020, 78(1):1-17. |
21 | 雷蕾,邢楠,周璇,等. 2018年北京“7.16”暖区特大暴雨特征及形成机制研究[J].气象学报,2020,78(1):1-17. |
22 | ZHONG L Z, MU R, ZHANG D L, et al. An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(8):3 274-3 291. |
23 | HE H Z, ZHANG F Q. Diurnal variations of warm-season precipitation over northern China[J]. Monthly Weather Review, 2010, 138(4):1 017-1 025. |
24 | HUA S F, XU X, CHEN B J. Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: a case study[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(13): e2019JD031731. |
25 | LIAO Fei, HU Yamin, HONG Yanchao. Numerical study for the influences of orographic dynamic on cloud and precipitation in North China[J]. Plateau Meteorology, 2009, 28(1):115-126. |
25 | 廖菲,胡娅敏,洪延超 .地形动力作用对华北暴雨和云系影响的数值研究[J].高原气象,2009,28(1):115-126. |
26 | MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16 663-16 682. |
27 | DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20):3 077-3 107. |
28 | HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004, 132(1):103-120. |
29 | GRELL G A, DéVéNYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14): 1 693-1 696. |
30 | JIMéNEZ P A, DUDHIA J, GONZáLEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 2012, 140(3):898-918. |
31 | BLACKADAR A K. Modeling pollutant transfer during daytime convection[C]//Preprints fourth symposium on atmospheric turbulence, diffusion and air quality. Reno Nevada: American Meteorological Society, 1978: 443-447. |
32 | HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9):2 318-2 341. |
33 | ABULIKEMU A, XU X, WANG Y, et al. A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front[J]. Atmospheric Research, 2016, 182:10-19. |
34 | DAVIS C A, GALARNEAU T J. The vertical structure of mesoscale convective vortices[J]. Journal of the Atmospheric Sciences, 2009, 66(3):686-704. |
35 | WILSON J W, SCHREIBER W E. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Monthly Weather Review, 1986, 114(12):2 516-2 536. |
36 | WECKWERTH T M, PARSONS D B. A review of convection initiation and motivation for IHOP_2002[J]. Monthly Weather Review, 2006, 134(1):5-22. |
37 | HARRISON S J, MECIKALSKI J R, KNUPP K R. Analysis of outflow boundary collisions in North-Central Alabama[J]. Weather and Forecasting, 2009, 24(6):1 680-1 690. |
/
〈 |
|
〉 |