全球变化研究

晚中新世低大气 pCO2 背景下暖室气候的成因机制

  • 魏思华 ,
  • 田军
展开
  • 同济大学 海洋与地球科学学院,上海 200092
魏思华(1997-),女,福建南平人,硕士研究生,主要从事古海洋学与古环境变化研究. E-mail: 1931664@tongji.edu.cn
田军 (1974-),男,湖北汉川人,教授,主要从事古海洋学与古环境变化研究. E-mail: tianjun@tongji.edu.cn

收稿日期: 2021-07-15

  修回日期: 2021-11-17

  网络出版日期: 2022-04-28

基金资助

国家自然科学基金重点项目“探索晚新生代太平洋中深层经向翻转流与气候演变冰期旋回的关系”(42030403);“晚中新世大洋碳位移事件的成因机制及其古环境效应”(41776051)

Mechanisms of Greenhouse Climate at Low Atmospheric CO2 Levels in the Late Miocene

  • Sihua WEI ,
  • Jun TIAN
Expand
  • School of Ocean and Earth Science,Tongji University,Shanghai 200092,China
WEI Sihua (1997-), female, Nanping City, Fujian Province, Master student. Research areas include paleoceanography and paleoclimatology. E-mail: 1931664@tongji.edu.cn
TIAN Jun (1974-), male, Hanchuan City, Hubei Province, Professor. Research areas include paleoceanography and paleoclimatology. E-mail: tianjun@tongji.edu.cn

Received date: 2021-07-15

  Revised date: 2021-11-17

  Online published: 2022-04-28

Supported by

the National Natural Science Foundation of China "Probing the forcing mechanism of the late Miocene ocean carbon shift and its environmental significance"(42030403);"Probing the relationship of the Pacific meridional overturning circulation with the glacial/interglacial variability of climate change during the late Cenozoic"(41776051)

摘要

晚中新世托尔通期(11.61~7.25 Ma)比现代更加温暖和潮湿,却有着与工业革命前相近的大气二氧化碳分压,这种低大气二氧化碳分压下的暖室气候在整个新生代都很特殊,搞清其驱动机制有助于预测未来气候变化。对此有两种解释:基于指标记录的晚中新世气候—二氧化碳分压“解耦假说”和基于数值模拟的“协同作用假说”。指标重建的地质记录表明晚中新世的气候可能并不受二氧化碳分压影响,即气候与二氧化碳分压发生解耦。数值模拟表明晚中新世异于现代的植被分布和地形构造等,很可能促成晚中新世全球温度的升高。但数值模拟很难充分模拟出晚中新世的升温幅度和模式。对晚中新世开展准确且高分辨率的二氧化碳分压重建是未来指标重建工作的重点,而植被反馈、云反馈、水蒸汽反馈和土壤性质是影响晚中新世暖室气候的主要因素,未来的数值模拟工作应朝这些方向推进。

本文引用格式

魏思华 , 田军 . 晚中新世低大气 pCO2 背景下暖室气候的成因机制[J]. 地球科学进展, 2022 , 37(4) : 417 -428 . DOI: 10.11867/j.issn.1001-8166.2021.116

Abstract

The period of the late Miocene Tortonian (11.61~7.25 Ma) was warmer and wetter than today, with atmospheric partial pressure of carbon dioxide (pCO2) near the preindustrial level. Greenhouse climate under low pCO2 was rare throughout the Cenozoic and understanding its mechanisms will help to better forecast the future climate. We summarized two hypotheses to elucidate this mechanism. One is the late Miocene climate-pCO2 "decoupling hypothesis" based on geological records, and the other is "synergistic effects hypothesis" based on climate modeling. Geological records indicate that the late Miocene climate may not have been affected by pCO2, that is, climate and pCO2 were decoupled. Climate modeling results indicate that different vegetation and tectonic conditions in the late Miocene may have contributed to the global temperature increase. However, realistically, it is difficult to fully simulate the amplitude and pattern of the late Miocene warmth. Future work should focus on reconstructing pCO2 records with high accuracy and resolution. Vegetation, clouds, water vapor feedback, and soil properties may be the dominant factors contributing to the late Miocene greenhouse climate, which should also be considered in future simulation work.

参考文献

1 HERBERT T D, LAWRENCE K T, TZANOVA A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
2 TIAN Jun, LIU Jingjing, LIU Zhonghui. Evolution of the East Equatorial Pacific cold tongue since the Late Miocene[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(6): 585-591.
2 田军, 刘晶晶, 柳中晖. 晚中新世以来东赤道太平洋冷舌的地质演化[J]. 中国科学基金, 2019, 33(6): 585-591.
3 LEAR C H, ROSENTHAL Y, WRIGHT J D. The closing of a seaway: ocean water masses and global climate change[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 425-436.
4 STEPPUHN A, MICHEELS A, BRUCH A A, et al. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data[J]. Global and Planetary Change, 2007, 57(3/4): 189-212.
5 BRADSHAW C D, LUNT D J, FLECKER R, et al. The relative roles of CO2 and palaeogeography in determining Late Miocene climate: results from a terrestrial model-data comparison[J]. Climate of the Past, 2012, 8(4): 1 257-1 285.
6 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
7 RUDDIMAN W. A paleoclimatic enigma?[J]. Science, 2010, 328(5 980): 838-839.
8 MICHEELS A, BRUCH A A, UHL D, et al. A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1/2): 251-270.
9 POUND M J, HAYWOOD A M, SALZMANN U, et al. A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300(1/2/3/4): 29-45.
10 BURLS N J, BRADSHAW C D, de BOER A M, et al. Simulating Miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1)[J]. Paleoceanography and Paleoclimatology, 2021, 36(5): e2020PA004054.
11 TRIPATI A K, ROBERTS C D, EAGLE R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326(5 958): 1 394-1 397.
12 QUADE J, CERLING T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1/2/3/4): 91-116.
13 BREECKER D O, RETALLACK G J. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 406: 1-8.
14 FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
15 PAGANI M, ARTHUR M A, FREEMAN K H. Miocene evolution of atmospheric carbon dioxide[J]. Paleoceanography, 1999, 14(3): 273-292.
16 PAGANI M, FREEMAN K H, ARTHUR M A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses[J]. Science, 1999, 285(5 429): 876-879.
17 PAGANI M, ZACHOS J C, FREEMAN K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 2005, 309(5 734): 600-603.
18 HENDERIKS J, PAGANI M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 [J]. Earth and Planetary Science Letters, 2008, 269(3/4): 576-584.
19 van der BURGH J, VISSCHER H, DILCHER D L, et al. Paleoatmospheric signatures in Neogene fossil leaves[J]. Science, 1993, 260(5 115): 1 788-1 790.
20 KüRSCHNER W M, KVACEK Z, DILCHER D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 449-453.
21 STULTS D Z, WAGNER-CREMER F, AXSMITH B J. Atmospheric paleo-CO2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of Eastern North America[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(3/4): 327-332.
22 WANG Y Q, MOMOHARA A, WANG L, et al. Evolutionary history of atmospheric CO2 during the Late Cenozoic from fossilized Metasequoia needles[J]. PLoS ONE, 2015, 10(7): e0130941.
23 SOSDIAN S M, GREENOP R, HAIN M P, et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy[J]. Earth and Planetary Science Letters, 2018, 498: 362-376.
24 HANSEN J, SATO M, RUSSELL G, et al. Climate sensitivity, sea level and atmospheric carbon dioxide[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(2 001): 20120294.
25 LüTHI D, le FLOCH M, BEREITER B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000?years before present[J]. Nature, 2008, 453(7 193): 379-382.
26 ZEEBE R E, ZACHOS J C, DICKENS G R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming[J]. Nature Geoscience, 2009, 2(8): 576-580.
27 ZACHOS J C, BOHATY S M, JOHN C M, et al. The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1 856): 1 829-1 842.
28 WARNY S, ASKIN R A, HANNAH M J, et al. Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene[J]. Geology, 2009, 37(10): 955-958.
29 YOU Y, HUBER M, MüLLER R D, et al. Simulation of the Middle Miocene climate optimum[J]. Geophysical Research Letters, 2009, 36(4): L04702.
30 SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion[J]. Science, 2004, 305(5 691): 1 766-1 770.
31 MOSBRUGGER V, UTESCHER T, DILCHER D L. Cenozoic continental climatic evolution of Central Europe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(42): 14 964-14 969.
32 LARIVIERE J P, RAVELO A C, CRIMMINS A, et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing[J]. Nature, 2012, 486(7 401): 97-100.
33 KNORR G, BUTZIN M, MICHEELS A, et al. A warm Miocene climate at low atmospheric CO2 levels[J]. Geophysical Research Letters, 2011, 38(20): L20701.
34 MICHEELS A, BRUCH A A, ERONEN J, et al. Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3/4): 337-350.
35 BRADSHAW C D, LUNT D J, FLECKER R, et al. Disentangling the roles of Late Miocene palaeogeography and vegetation-Implications for climate sensitivity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 417: 17-34.
36 CRICHTON K A, RIDGWELL A, LUNT D J, et al. Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model[J]. Climate of the Past, 2021, 17(5): 2 223-2 254.
37 STEPPUHN A, MICHEELS A, GEIGER G, et al. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 238(1/2/3/4): 399-423.
38 STEINTHORSDOTTIR M, COXALL H K, de BOER A M, et al. The Miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004037.
39 ZACHOS J C, DICKENS G R, ZEEBE R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 279-283.
40 TIAN J, MA X L, ZHOU J H, et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific-Atlantic comparison: high resolution benthic foraminiferal δ 18O and δ 13C records at IODP Site U1337[J]. Earth and Planetary Science Letters, 2018, 499: 185-196.
41 STEPH S, TIEDEMANN R, PRANGE M, et al. Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue[J]. Paleoceanography, 2010, 25(2): PA2202.
42 ZHANG X, PRANGE M, STEPH S, et al. Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: insights from a multi-model study[J]. Earth and Planetary Science Letters, 2012, 317/318: 76-84.
43 LI Qianyu, LI Baohua, ZHONG Guangfa, et al. Planktonic foraminifer and oxygen isotopic evidence of a late Miocene western Pacific warm pool[J]. Earth Science, 2006, 31(6): 754-764.
43 李前裕, 李保华, 钟广法, 等. 晚中新世西太平洋暖池的浮游有孔虫和氧同位素证据[J]. 地球科学, 2006, 31(6): 754-764.
44 FEDOROV A V, PACANOWSKI R C, PHILANDER S G, et al. The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean[J]. Journal of Physical Oceanography, 2004, 34(9): 1 949-1 966.
45 PHILANDER S G, FEDOROV A V. Role of tropics in changing the response to Milankovich forcing some three million years ago[J]. Paleoceanography, 2003, 18(2): 1045.
46 LI Tiegang, XIONG Zhifang, JIA Qi. Water exchange between western Pacific warm pool and Indian warm pool and its climatic effects since the Late Miocene[J]. Advances in Marine Science, 2020, 38(3): 377-389.
46 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋—太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3): 377-389.
47 BRIERLEY C M, FEDOROV A V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution[J]. Paleoceanography, 2010, 25(2): PA2214.
48 FEDOROV A V, BRIERLEY C M, EMANUEL K. Tropical cyclones and permanent El Ni?o in the early Pliocene epoch[J]. Nature, 2010, 463(7 284): 1 066-1 070.
49 DECONTO R M, POLLARD D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. Nature, 2003, 421(6 920): 245-249.
50 CAME R E, EILER J M, VEIZER J, et al. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era[J]. Nature, 2007, 449(7 159): 198-201.
51 ROYER D L, BERNER R A, PARK J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years[J]. Nature, 2007, 446(7 135): 530-532.
52 HUBER M, CABALLERO R. The early Eocene equable climate problem revisited[J]. Climate of the Past, 2011, 7(2): 603-633.
53 HUBER M, SLOAN L C. Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene greenhouse climate[J]. Geophysical Research Letters, 2001, 28(18): 3 481-3 484.
54 HAYWOOD A M, TINDALL J C, DOWSETT H J, et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity[J]. Climate of the Past, 2020, 16(6): 2 095-2 123.
55 ZHU J, POULSEN C J, TIERNEY J E. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks[J]. Science Advances, 2019, 5(9): eaax1874.
56 HEROLD N, SETON M, MüLLER R D, et al. Middle Miocene tectonic boundary conditions for use in climate models[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10): Q10009.
57 HEINE C, MüLLER R D, STEINBERGER B, et al. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia[J]. Tectonophysics, 2010, 483(1/2): 135-150.
58 MOLNAR P. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate[J]. Paleontologia Electronica,2005, 8(1): 1-23.
59 WANG Erchie. Evolution of the Tibetan Plateau:as constrained by major tectonic-thermo events and a discussion on their origin[J]. Chinese Journal of Geology, 2013, 48(2): 334-353.
59 王二七. 青藏高原大地构造演化——主要构造—热事件的制约及其成因探讨[J]. 地质科学,2013,48(2):334-353.
60 KUHLEMANN J. Paleogeographic and paleotopographic evolution of the Swiss and eastern Alps since the Oligocene[J]. Global and Planetary Change, 2007, 58(1/2/3/4): 224-236.
61 GARZIONE C N, HOKE G D, LIBARKIN J C, et al. Rise of the Andes[J]. Science, 2008, 320(5 881): 1 304-1 307.
62 MORGAN P, SWANBERG C A. On the Cenozoic uplift and tectonic stability of the Colorado Plateau[J]. Journal of Geodynamics, 1985, 3(1/2): 39-63.
63 DUQUE-CARO H. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama seaway[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 77(3/4): 203-234.
64 O'DEA A, LESSIOS H A, COATES A G, et al. Formation of the isthmus of Panama[J]. Science Advances, 2016, 2(8): e1600883.
65 BUTZIN M, LOHMANN G, BICKERT T. Miocene Ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26(1): PA1203.
66 NISANCIOGLU K H, RAYMO M E, STONE P H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway[J]. Paleoceanography, 2003, 18(1): 1006.
67 LUNT D J, VALDES P J, HAYWOOD A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1): 1-18.
68 HOFFMANN W A, JACKSON R B. Vegetation-climate feedbacks in the conversion of tropical savanna to grassland[J]. Journal of Climate, 2000, 13(9): 1 593-1 602.
69 SHUKLA J, NOBRE C, SELLERS P. Amazon deforestation and climate change[J]. Science, 1990, 247(4 948): 1 322-1 325.
70 HE Juan, WANG Pinxian. Vegetation change in late Miocene and evolution of photosynthesis[J]. Advances in Earth Science, 2005, 20(6): 618-626.
70 贺娟,汪品先. 晚中新世植被变更与光合作用演化[J]. 地球科学进展,2005,20(6):618-626.
71 STEIN R, FAHL K, SCHRECK M, et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean[J]. Nature Communications, 2016, 7: 11148.
72 KNORR G, LOHMANN G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376-381.
73 HAMON N, SEPULCHRE P, DONNADIEU Y, et al. Growth of subtropical forests in Miocene Europe: the roles of carbon dioxide and Antarctic ice volume[J]. Geology, 2012, 40(6): 567-570.
74 MARZOCCHI A, FLECKER R, LUNT D J, et al. Precessional drivers of late Miocene Mediterranean sedimentary sequences: African summer monsoon and Atlantic winter storm tracks[J]. Paleoceanography and Paleoclimatology, 2019, 34(12): 1 980-1 994.
75 MARZOCCHI A, LUNT D J, FLECKER R, et al. Orbital control on late Miocene climate and the North African monsoon: insight from an ensemble of sub-precessional simulations[J]. Climate of the Past, 2015, 11(10): 1 271-1 295.
76 SIMON D, MARZOCCHI A, FLECKER R, et al. Quantifying the Mediterranean freshwater budget throughout the late Miocene: new implications for sapropel formation and the Messinian Salinity Crisis[J]. Earth and Planetary Science Letters, 2017, 472: 25-37.
77 LUNT D J, FRAN B, LE C W, et al. DeepMIP: model intercomparison of Early Eocene Climatic Optimum (EECO) large-scale climate features and comparison with proxy data[J]. Climate of the Past, 2021, 17(1): 203-227.
78 ST?RZ M, LOHMANN G, KNORR G. Dynamic soil feedbacks on the climate of the mid-Holocene and the Last Glacial Maximum[J]. Climate of the Past Discussions, 2013, 9(3): 2 717-2 770.
79 MEJíA L M, MéNDEZ-VICENTE A, ABREVAYA L, et al. A diatom record of CO2 decline since the late Miocene[J]. Earth and Planetary Science Letters, 2017, 479: 18-33.
80 SPICER R A, HARRIS N B W, WIDDOWSON M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421(6 923): 622-624.
81 ENGLAND P, SEARLE M. The Cretaceous-tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet[J]. Tectonics, 1986, 5(1): 1-14.
82 CLARK M K, HOUSE M A, ROYDEN L H, et al. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 2005, 33(6): 525.
83 ROWLEY D B, GARZIONE C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508.
84 COLLINS L S, COATES A G, BERGGREN W A, et al. The late Miocene Panama isthmian strait[J]. Geology, 1996, 24(8): 687.
85 BIERMAN P R, SHAKUN J D, CORBETT L B, et al. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years[J]. Nature, 2016, 540(7 632): 256-260.
86 OSBORNE T M, LAWRENCE D M, SLINGO J M, et al. Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters[J]. Climate Dynamics, 2004, 23(1): 45-61.
文章导航

/