综述与评述

北极冰间水道区域的物理过程和遥感观测研究进展

  • 屈猛 ,
  • 赵羲 ,
  • 庞小平 ,
  • 雷瑞波
展开
  • 1.中国极地研究中心 自然资源部极地科学重点实验室,上海 200136
    2.中山大学 测绘科学与 技术学院,广东 珠海 519082
    3.武汉大学 中国南极测绘研究中心,湖北 武汉 430079
屈猛(1991-),男,安徽阜阳人,助理研究员,主要从事海—冰—气相互作用及海冰遥感研究. E-mail: qumeng@pric.org.cn

收稿日期: 2021-08-24

  修回日期: 2021-10-25

  网络出版日期: 2022-04-28

基金资助

国家自然科学基金项目“北冰洋海冰冰场形变及其热力学效应观测研究”(41976219);“北极波弗特海域冰间水道的精细化识别及其热力学效应研究”(41876223)

Review of Arctic Sea Ice Leads: Physics and Remote Sensing

  • Meng QU ,
  • Xi ZHAO ,
  • Xiaoping PANG ,
  • Ruibo LEI
Expand
  • 1.Key Laboratory of Polar Science of Ministry of Natural Resources,Polar Research Institute of China,Shanghai 200136,China
    2.School of Geospatial Engineering and Science,Sun Yat-Sen University,Zhuhai Guangdong 519082,China
    3.Chinese Antarctic Center of Surveying and Mapping,Wuhan University,Wuhan 430079,China
QU Meng (1991-), male, Fuyang City, Anhui Province, Assistance professor. Research areas include ocean-ice-atmosphere interaction and sea ice remote sensing. E-mail: qumeng@pric.org.cn

Received date: 2021-08-24

  Revised date: 2021-10-25

  Online published: 2022-04-28

Supported by

the National Natural Science Foundation of China "Observation of sea ice deformation in the Arctic and its thermal dynamic impact"(41976219);"Refined detection of Arctic sea ice leads in the Beaufort Sea and its thermal dynamic effect"(41876223)

摘要

冰间水道是海冰区在风力和洋流作用下形成的线状断裂带。总结了冰间水道区域海洋—海冰—大气相互作用的物理机制和水道遥感的研究现状。冰间水道是极区海洋与大气间水热交换的重要窗口,是冬季产冰析盐和夏季融冰产生淡水的重要场所,也是极区动物赖以生存的栖息地和迁徙通道。利用水道与浮冰之间在反照率、表面温度、发射率和粗糙度等性质上的差异,可通过光学、红外和微波等多种遥感手段来识别和提取水道。随着北极海冰厚度的减小和季节性衰退的提前,波弗特海的水道宽度、面积和出现频率均呈现增加的态势。在北极海冰不断减少的态势下,未来需要结合现场和遥感观测重新评估水道表面能量收支及其对区域能量平衡的贡献,更准确地认识其在北极气候变暖放大效应中的作用。

本文引用格式

屈猛 , 赵羲 , 庞小平 , 雷瑞波 . 北极冰间水道区域的物理过程和遥感观测研究进展[J]. 地球科学进展, 2022 , 37(4) : 382 -391 . DOI: 10.11867/j.issn.1001-8166.2021.102

Abstract

Sea ice leads are linear fracture zones in Arctic pack ice caused by divergent sea ice motion driven by wind and ocean currents. In winter, leads that are the main factories of ice formation and brine rejection, serve as the prime window for heat and material exchange between the Arctic Ocean and atmosphere. Spring onward, solar shortwave radiation transmitted through leads promotes the bloom of ice algae and plankton and subsequently sustains a habitat for wildlife in the Arctic. In summer, meltwater from sea ice floats on the ocean surface and usually converges to a reservoir of leads. In practice, the ocean surface in open leads is a crucial reference for satellite altimetry because it provides pathways for surface vessels and migration corridors for marine animals. Leads can be detected in optical, thermal, and microwave remote sensing images utilizing the contrast in their albedo, surface temperature, emissivity, and roughness from the surrounding pack ice. Various satellite and airborne images with moderate and high ground resolution have been used to evaluate the presence of leads. The products of lead distribution in the Arctic have been generated using different satellite remote sensing techniques. As sea ice in the Arctic becomes thinner and retreats earlier in the melt season, changes in the spatial and temporal distributions of leads can be expected. A recent study using MODIS thermal images has confirmed the continuous rise of spring lead areas in the Beaufort Sea since 2001, although for the entire Arctic, the results are still inconclusive. In the context of declining sea ice, the energy budget in leads must be parameterized based on comprehensive observations. The contribution of both open and refreezing leads to a regional energy and mass balance of sea ice, and its role in the changing Arctic climate and marine system, remains to be recognized.

参考文献

1 KWOK R. Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: a qualitative survey [C]// DEMPSEY J P, SHEN H H. IUTAM symposium on scaling laws in ice mechanics and ice dynamics. Dordrecht: Springer, 2001: 315-322.
2 World Meteorology Organization. Sea ice nomenclature, summary and purpose of Document WMO No. 259 [R]. Geneva: WMO, 2014.
3 SHOKR M, SINHA N K. Sea ice: physics and remote sensing[M]. Hoboken, United States: John Wiley & Sons, 2015: 68-76.
4 ANDREAS E L, PAULSON C A, WILLIAM R M, et al. The turbulent heat flux from Arctic leads [J]. Boundary-Layer Meteorology, 1979, 17(1): 57-91.
5 OVERLAND J E, MCNUTT S L, GROVES J, et al. Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment [J]. Journal of Geophysical Research: Oceans, 2000, 105(C6): 14 093-14 102.
6 BADGLEY F I. Heat balance at the surface of the Arctic Ocean [C]// Proceedings of the symposium on the Arctic heat budget and atmospheric circulation. Santa Monica, California: Rand Corporation, 1966: 215-246.
7 MAYKUT G A. Energy exchange over young sea ice in the central Arctic [J]. Journal of Geophysical Research: Oceans, 1978, 83(C7): 3 646-3 658.
8 LüPKES C, VIHMA T, BIRNBAUM G, et al. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night [J]. Geophysical Research Letters, 2008, 35(3): L03805.
9 TETZLAFF A, LüPKES C, HARTMANN J. Aircraft‐based observations of atmospheric boundary-layer modification over Arctic leads [J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(692): 2 839-2 856.
10 ASSMY P, FERNáNDEZ-MéNDEZ M, DUARTE P, et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice [J]. Scientific Reports, 2017, 7: 40850.
11 SMITH S D, MUENCH R D, PEASE C H. Polynyas and leads: an overview of physical processes and environment [J]. Journal of Geophysical Research: Oceans, 1990, 95(C6): 9 461-9 479.
12 TASKJELLE T, GRANSKOG M A, PAVLOV A K, et al. Effects of an Arctic under‐ice bloom on solar radiant heating of the water column [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 126-138.
13 CHEN Zhihua, ZHAO Jinping. The thermodynamics of subsurface warm water in the Arctic Ocean [J]. Oceanologia et Limnologia Sinica, 2010, 41(2): 167-174.
13 陈志华, 赵进平. 北冰洋次表层暖水形成机制的研究 [J]. 海洋与湖沼, 2010, 41(2): 167-174.
14 ZHANG Y Y, CHENG X, LIU J P, et al. The potential of sea ice leads as a predictor for summer Arctic sea ice extent [J]. The Cryosphere, 2018, 12(12): 3 747-3 757.
15 ZHANG Yuanyuan, CHENG Xiao, LIU Jiping, et al. Remote sensing of sea ice leads in the Arctic [M] // CHENG Xiao, HUI Fengming, PANG Xiaoping, et al. Arctic sea ice remote sensing: method and application. Beijing: China Ocean Press, 2020: 195-213. [
15 张媛媛, 程晓, 刘骥平, 等. 北极冰间水道遥感反演研究 [M] // 程晓,惠凤鸣,庞小平, 等. 北极海冰遥感反演方法及应用. 北京: 海洋出版社, 2020: 195-213.]
16 YUAN Lexian, LI Fei, ZHANG Shengkai, et al. A study of Arctic sea ice freeboard heights from ICESat/GLAS [J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1 176-1 182.
16 袁乐先, 李斐, 张胜凯, 等. 利用ICESat/GLAS 数据研究北极海冰干舷高度 [J]. 武汉大学学报(信息科学版), 2016, 41(9): 1 176-1 182.
17 JI Qing, PANG Xiaoping, ZHAO Xi, et al. Comparison of sea ice thickness retrieval algorithms from CryoSat-2 satellite altimeter data [J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1 467-1 472.
17 季青, 庞小平, 赵羲, 等. 基于CryoSat-2数据的海冰厚度估算算法比较[J]. 武汉大学学报(信息科学版), 2015, 40(11): 1 467-1 472.
18 LI M M, KE C Q, SHEN X Y, et al. Investigation of the Arctic sea ice volume from 2002 to 2018 using multi‐source data [J]. International Journal of Climatology, 2021, 41(4): 2 509-2 527.
19 SU Jie, XU Dong, ZHAO Jinping, et al. Features of northwest passage sea ice's distribution and variation under Arctic rapidly warming condition [J]. Chinese Journal of Polar Research, 2010, 22(2): 104-124.
19 苏洁, 徐栋, 赵进平, 等. 北极加速变暖条件下西北航道的海冰分布变化特征 [J]. 极地研究, 2010, 22(2): 104-124.
20 CAO Yunfeng, YU Meng, HUI Fengming, et al. Review of navigability changes in trans-Arctic routes [J]. Chinese Science Bulletin, 2021, 66(1): 21-33.
20 曹云锋, 于萌, 惠凤鸣,等. 北极冰区通航能力变化研究进展 [J]. 科学通报, 2021, 66(1): 21-33.
21 YANG Qinghua, ZHANG Zhanhai, LIU Jiping, et al. Review of sea ice albedo parameterizations [J]. Advances in Earth Science, 2010, 25(1): 14-21.
21 杨清华, 张占海, 刘骥平, 等. 海冰反照率参数化方案的研究回顾 [J]. 地球科学进展, 2010, 25(1): 14-21.
22 JUNG T, GORDON N D, BAUER P, et al. Advancing polar prediction capabilities on daily to seasonal time scales [J]. Bulletin of the American Meteorological Society, 2016, 97(9): 1 631-1 647.
23 WANG Q, DANILOV S, JUNG T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends [J]. Geophysical Research Letters, 2016, 43(13): 7 019-7 027.
24 PAULSON C, SMITH J. The AIDJEX lead experiment [J]. AIDJEX Bulletin, 1974, 23: 1-8.
25 The LeadEx Group. The LEADEX experiment [J]. Eos, Transactions American Geophysical Union, 1993, 74(35): 393-397.
26 TSCHUDI M A, CURRY J A, MASLANIK J A. Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA [J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): SHE9-1.
27 BARBER D G, ASPLIN M G, GRATTON Y, et al. The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: overview and the physical system [J]. Atmosphere-Ocean, 2010, 48(4): 225-243.
28 GRANSKOG M A, ASSMY P, GERLAND S, et al. Arctic research on thin ice: consequences of Arctic sea ice loss [J]. Eos, Transactions American Geophysical Union, 2016, 97(5): 22-26.
29 LEI Ruibo. Contributions to the MOSAiC from China[J]. Chinese Journal of Polar Research, 2020, 32(4): 596-600.
29 雷瑞波. 我国参与 MOSAiC 气候多学科漂流冰站计划的概况 [J]. 极地研究, 2020, 32(4): 596-600.
30 RENFREW I A, KING J C. A simple model of the convective internal boundary layer and its application to surface heat flux estimates within polynyas [J]. Boundary-Layer Meteorology, 2000, 94(3): 335-356.
31 ALAM A, CURRY J A. Determination of surface turbulent fluxes over leads in Arctic sea ice [J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 331-3 343.
32 ANDREAS E L, MURPHY B. Bulk transfer coefficients for heat and momentum over leads and polynyas [J]. Journal of Physical Oceanography, 1986, 16(11): 1 875-1 883.
33 ANDREAS E L, CASH B A. Convective heat transfer over wintertime leads and polynyas [J]. Journal of Geophysical Research: Oceans, 1999, 104(C11): 25 721-25 734.
34 MARCQ S, WEISS J. Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere [J]. The Cryosphere, 2012, 6(1): 143-156.
35 ESAU I N. Amplification of turbulent exchange over wide Arctic leads: large-eddy simulation study [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8): 109.
36 SCHNELL R C, BARRY R G, MILES M W, et al. Lidar detection of leads in Arctic sea ice [J]. Nature, 1989, 339(6 225): 530-532.
37 SERREZE M C, MASLANIK J A, REHDER M C, et al. Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover [J]. Journal of Geophysical Research: Oceans, 1992, 97(C6): 9 411-9 422.
38 MAYKUT G A. The surface heat and mass balance [M]// UNTERSTEINER N. The geophysics of sea ice. New York, United States: Springer, 1986: 395-463.
39 BATES N, MATHIS J. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks [J]. Biogeosciences, 2009, 6(11): 2 433-2 459.
40 KORT E A, WOFSY S C, DAUBE B C, et al. Atmospheric observations of Arctic Ocean methane emissions up to 82 north [J]. Nature Geoscience, 2012, 5(5): 318-321.
41 TOYODA S, KAKIMOTO T, KUDO K, et al. Distribution and production mechanisms of N2O in the western Arctic Ocean [J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006881.
42 KUPISZEWSKI P, LECK C, TJERNSTR?M M, et al. Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer [J]. Atmospheric Chemistry and Physics, 2013, 13(24): 12 405-12 431.
43 RUFFIEUX D, PERSSON P O G, FAIRALL C W, et al. Ice pack and lead surface energy budgets during LEADEX 1992 [J]. Journal of Geophysical Research: Oceans, 1995, 100(C3): 4 593-4 612.
44 HALL R T, ROTHROCK D A. Photogrammetric observations of the lateral melt of sea ice floes [J]. Journal of Geophysical Research: Oceans, 1987, 92(C7): 7 045-7 048.
45 MARTIN S. Frazil ice in rivers and oceans [J]. Annual Review of Fluid Mechanics, 1981, 13(1): 379-397.
46 PEROVICH D K, RICHTER-MENGE J A. Surface characteristics of lead ice [J]. Journal of Geophysical Research: Oceans, 1994, 99(C8): 16 341-16 350.
47 WENSNAHAN M R, GRENFELL T C, WINEBRENNER D P, et al. Observations and theoretical studies of microwave emission from thin saline ice [J]. Journal of Geophysical Research: Oceans, 1993, 98(C5): 8 531-8 545.
48 KALESCHKE L, RICHTER A, BURROWS J, et al. Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry [J]. Geophysical Research Letters, 2004, 31(16): L16114.
49 TAKIZAWA T. Salination of snow on sea ice and formation of snow ice [J]. Annals of Glaciology, 1985, 6: 309-310.
50 KOZO T L. Initial model results for Arctic mixed layer circulation under a refreezing lead [J]. Journal of Geophysical Research: Oceans, 1983, 88(C5): 2 926-22 934.
51 JEFFRIES M O, SCHWARTZ K, MORRIS K, et al. Evidence for platelet ice accretion in Arctic sea ice development [J]. Journal of Geophysical Research: Oceans, 1995, 100(C6): 10 905-10 914.
52 SMITH D C I, LAVELLE J W, FERNANDO H J S. Arctic Ocean mixed-layer eddy generation under leads in sea ice [J]. Journal of Geophysical Research: Oceans, 2002, 107(C8): 3103.
53 MCPHEE M, KWOK R, ROBINS R, et al. Upwelling of Arctic pycnocline associated with shear motion of sea ice [J]. Geophysical Research Letters, 2005, 32(10): 616.
54 PAULSON C A, PEGAU W S. The role of summer leads in melting sea ice [R]. Corvallis: Oregon State University Corvallis College of Oceanic and Atmospheric Sciences, 2001.
55 ALEXANDROV D V, NIZOVTSEVA I G. To the theory of underwater ice evolution, or nonlinear dynamics of "false bottoms" [J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5 204-5 208.
56 PEROVICH D, SMITH M, LIGHT B, et al. Meltwater sources and sinks for multiyear Arctic sea ice in summer [J]. The Cryosphere, 2021, 15(9): 4 517-4 525.
57 OLSEN L M, LANEY S R, DUARTE P, et al. The seeding of ice algal blooms in Arctic pack ice: the multiyear ice seed repository hypothesis [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(7): 1 529-1 548.
58 ARRIGO K R, PEROVICH D K, PICKART R S, et al. Massive phytoplankton blooms under Arctic sea ice [J]. Science, 2012, 336(6 087): 1408.
59 HOP H, MUNDY C J, GOSSELIN M, et al. Zooplankton boom and ice amphipod bust below melting sea ice in the Amundsen Gulf, Arctic Canada [J]. Polar Biology, 2011, 34(12): 1 947-1 958.
60 FERGUSON S H, TAYLOR M K, MESSIER F. Influence of sea ice dynamics on habitat selection by polar bears [J]. Ecology, 2000, 81(3): 761-772.
61 STIRLING I. The importance of polynyas, ice edges, and leads to marine mammals and birds [J]. Journal of Marine Systems, 1997, 10(1/2/3/4): 9-21.
62 FILY M, ROTHROCK D A. Opening and closing of sea ice leads: digital measurements from synthetic aperture radar [J]. Journal of Geophysical Research, 1990, 95(C1): 789-796.
63 KEY J, STONE R, MASLANIK J, et al. The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale [J]. Annals of Glaciology, 1993, 17: 227-232.
64 LINDSAY R W, ROTHROCK D A. Arctic sea ice leads from advanced very high resolution radiometer images [J]. Journal of Geophysical Research: Oceans, 1995, 100(C3): 4 533-4 544.
65 FETT R W, ENGLEBRETSON R E, BURK S D. Techniques for analyzing lead condition in visible, infrared and microwave satellite imagery [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D12): 13 657-13 671.
66 MAHONEY A R, EICKEN H, SHAPIRO L H. Mapping and characterization of recurring spring leads and landfast ice in the Beaufort and Chukchi Seas [R]. US Department of the Interior, Minerals Management Service, Alaska Outer Continental Shelf Region, 2012.
67 BR?HAN D, KALESCHKE L. A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E [J]. Remote Sensing, 2014, 6(2): 1 451-1 475.
68 WILLMES S, HEINEMANN G. Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003-2015 [J]. Remote Sensing, 2016, 8(1): 4.
69 QU M, PANG X P, ZHAO X, et al. Spring leads in the Beaufort Sea and its interannual trend using Terra/MODIS thermal imagery [J]. Remote Sensing of Environment, 2021, 256: 112342.
70 WANG Yu, MA Yuxian, CHEN Yuan, et al. Analysis on the morphological characteristics of Arctic leads based on satellite imageries [J]. Journal of Ocean Technology, 2019, 38(2): 8-13.
70 王玉, 马玉贤, 陈元, 等. 基于卫星图像的北极冰间水道形态学特征分析 [J]. 海洋技术学报, 2019, 38(2): 8-13.
71 HOFFMAN J, ACKERMAN S, LIU Y H, et al. The detection and characterization of Arctic sea ice leads with satellite imagers [J]. Remote Sensing, 2019, 11(5): 521.
72 R?HRS J, KALESCHKE L. An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery [J]. The Cryosphere, 2012, 6(2): 343-352.
73 KEY J, STONE R, MASLANIK J. Lead retrieval using visible and thermal AVHRR imagery: testing theoretical atmospheric and geometric effects with LEADEX data [C]// Proceedings of IGARSS'94-1994 IEEE international geoscience and remote sensing symposium. Pasadena, CA, USA: IEEE, 1994, 2: 1 012-1 014.
74 MURASHKIN D, SPREEN G, HUNTEMANN M, et al. Method for detection of leads from Sentinel-1 SAR images [J]. Annals of Glaciology, 2018, 59(76pt2): 124-136.
75 WERNECKE A, KALESCHKE L. Lead detection in Arctic sea ice from CryoSat-2: quality assessment, lead area fraction and width distribution [J]. The Cryosphere, 2015, 9(5): 1 955-1 968.
76 WILLMES S, HEINEMANN G. Pan-Arctic lead detection from MODIS thermal infrared imagery [J]. Annals of Glaciology, 2015, 56(69): 29-37.
77 WILLMES S, HEINEMANN G. Daily pan-Arctic sea-ice lead maps for 2003-2015, with links to maps in NetCDF format [DB/OL]. Germany: PANGAEA, 2015. [2021-08-24]. DOI:10.1594/PANGAEA.854411 .
78 REISER F, WILLMES S, HEINEMANN G. A new algorithm for daily sea ice lead identification in the Arctic and Antarctic winter from thermal-infrared satellite imagery [J]. Remote Sensing, 2020, 12(12): 1957.
79 WEISS J, MARSAN D. Scale properties of sea ice deformation and fracturing [J]. Comptes Rendus Physique, 2004, 5(7): 735-751.
80 KEY J, PECKHAM S. Probable errors in width distributions of sea ice leads measured along a transect [J]. Journal of Geophysical Research: Oceans, 1991, 96(C10): 18 417-18 423.
81 QU M, PANG X P, ZHAO X, et al. Estimation of turbulent heat flux over leads using satellite thermal images [J]. The Cryosphere, 2019, 13(6): 1 565-1 582.
82 MURASHKIN D, SPREEN G. Sea ice leads detected from Sentinel-1 SAR images[C]// Proceedings of the IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. Yokohama, Japan: IEEE, 2019: 174-177.
83 LI Zhijun, ZHANG Zhanhai, LU Peng, et al. Some parameters on Arctic sea ice dynamics from the expedition in summer of 2003 [J]. Advances in Water Science, 2007, 18(2): 193-197.
83 李志军, 张占海, 卢鹏, 等. 2003 年夏季北冰洋海冰动力学特征参数[J]. 水科学进展, 2007, 18(2): 193-197.
84 LEI R B, LI Z J, LI N, et al. Crucial physical characteristics of sea ice in the Arctic section of 143°-180° W during August and early September 2008 [J]. Acta Oceanologica Sinica, 2012, 31(4): 65-75.
85 XIE H, LEI R, KE C, et al. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise [J]. The Cryosphere, 2013, 7(4): 1 057-1 072.
86 STEELE M, DICKINSON S, ZHANG J, et al. Seasonal ice loss in the Beaufort Sea: toward synchrony and prediction [J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1 118-1 132.
87 HUTCHINGS J K, RIGOR I G. Role of ice dynamics in anomalous ice conditions in the Beaufort Sea during 2006 and 2007 [J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C00E04.
88 NIU X L, PINKER R T. Radiative fluxes at Barrow, Alaska: a satellite view [J]. Journal of Climate, 2011, 24(21): 5 494-5 505.
文章导航

/