综述与评述

遥感变化检测技术发展综述

  • 王长耀 ,
  • 马建文 ,
  • 田国良 ,
  • 燕守勋
展开
  • 中国科学院遥感应用研究所,北京 100101
马建文(1953-),男,河北省献县人,研究员,主要从事遥感数据模型与处理研究.E-mail: jianwen@irsa.irsa.ac.cn

收稿日期: 2003-05-20

  修回日期: 2003-06-30

  网络出版日期: 2004-04-01

基金资助

国家科技攻关项目“奥运环境变化监测”(编号:2003BA904B07-2);国家863计划项目“遥感图像处理平台”(编号:2003AA135080-2);中国科学院遥感应用研究所知识创新项目“遥感数据智能处理”(编号:CX020014)资助.

REVIEW OF THE  DEVELOPMENT OF REMOTE SENSING CHANGE DETECTION TECHNOLOGY

Expand
  • Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2003-05-20

  Revised date: 2003-06-30

  Online published: 2004-04-01

摘要

卫星遥感的复轨能力,稳定一致的传感器参数和系列运行计划,连续记录了地表的显著变化信息。对遥感观测到的变化信息,还需要区分是地表物理生物要素变化引起的变化,还是辐射传输路径上其它干扰因素造成的变化信息,需要从各种变化信息组分中区分目标变化信息。因此,遥感变化检测是遥感信息科学、地球系统科学、统计学和计算机技术等学科技术交叉后新的增长点,代表了当前遥感数据处理技术发展方向。为了促进遥感变化检测技术在我国的发展,收集阅读了近几年国外主要遥感刊物发表的论文、专著,综合了我国遥感变化检测技术发展现状以及大量的网络资料。

本文引用格式

王长耀 , 马建文 , 田国良 , 燕守勋 . 遥感变化检测技术发展综述[J]. 地球科学进展, 2004 , 19(2) : 192 -196 . DOI: 10.11867/j.issn.1001-8166.2004.02.0192

Abstract

The satellites track review, stable and constant sensor parameters, as well as systematic operation plan enable us to continuously observe and depict the Earth surface and to record distinct changes. For the changed information observed, it is necessary to determine whether the change results from the natural processing of biogeophysical factors or the change results from satellite system or from our targets of interest. Therefore, remote sensing change detection technology is much more complex than remote sensing data processing algorithms usually used in our operation system. It is a newly developed remote sensing temporal data processing system by combining selected radiometric correction, image matching, geometric correction and post classification analysis and vector analysis to finish one assignment. It is change target objective oriented procedure by combining remote sensing information science, earth sciences, statistics and computer sciences. In order to promote the remote sensing change detection in Chinese remote sensing community, we wrote this paper based on what we learned from nearly 200 books, articles, papers, project reports and Internet information.

参考文献

[1] Raynal L. Some Elements for Modeling Updates in Topographic Databases[M]. Proceedings of GIS/lIS Annual Conference and Exposition, 1996.1 223-1 232.  
[2] Ross S Lunetta, Christopher D. Elvidge, Remote Sensing Change Detection[M]. Princeton, USA:Taylor and Frances Press, 1999. 
[3] Ashbindu singh. Digital change detection techniques using remotely sensed data[J].International Journal of Remote Sensing, 1989,10:989-1 003. 
[4] Lorenzo Bruzzone, Diego Fernande Prieto. Automatic analysis of the differnce image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(3):1 024-1 030. 
[5] Guo Huadong(郭华东), Shao Yun(邵云), Wang Changlin(王长林), et al. Radar Remote Sensing: Theory and Applications[M].Beijing: Science Press, 2000(in Chinese). 
[6] Song Conghe, Curtis E W. Classification and change detection using landsat TM data: When and how to correct atmospheric effects?[J]. Remote Sensing of Environment, 2001,75:230-244. 
[7] Johnson R D, Kasischeke E S. Change vector analysis: A technique for the multispectral monitoring of land cover and condition[J]. International Journal of Remote Sensing, 1998,19(3):411-426. 
[8] Joon Heo, Thomas W Fitzhugh. A standardized radiometric normalization method for change detection using remotely sensed imagery[J].Photommetric Engineering and Remote Sensing,2000, 66(2):173-181. 
[9] Byrne G F, Crapper P F. Monitoring landcover change by principal component analysis of multitemporal Landsat data[J]. Remote Sensing of Environment, 1980, 10:175-184. 
[10] Knut C, Nielsen A A. A test statistic in the complex distribution and its application to change detection in polar metric SAR data[J]. IEEE Transaction on Geoscience and Remote Sensing,2003,41(1):1 493-1 502.  
[11] Chen Shupeng(陈述彭), Tong Qingxi(童庆喜), Guo Huadong(郭华东). The Study of Remote Sensing Mechanisms[M]. Beijing: Science Press,1998(in Chinese). 
[12] Wu Xinghui(吴兴惠), Wang Caijun(王彩君). Sensor and Signal Processing[M]. Beijing: Electronic Industry Press, 1998(in Chinese). 
[13] Wang Chao(王超), Zhang Hong(张红), Liu Zhi(刘智). Space Borne Synthetic Aperture Radar Interferometry[M]. Beijig:Sceince Press,2002. 
[14] Fitzgerald R W, Lees B G. Assessing the classification accuracy of multisource remote sensing data[J]. Remote Sensing of Environment, 1994,47:362-368. 
[15]Eric F L, Strahler A H. Change-Vector analysis in multitemporal space: A tool to detect and categorize landcover change process using high temporalresolution satellite data[J]. Remote Sensing of Environment, 1994,48:231-244. 
[16]Terry L S. Change analysis in the united Arab emirates: An investigation of techniques[J]. Photommetric Engineering and Remote Sensing,1999, 65(4):475-484. 
[17]Loveland T R,Sohl S V. A strategy for estimating the rates of resent united states land-cover changes[J]. Photommetric Engineering and Remote Sensing, 2002,68(10):1 091-1  099. 
[18]Maria M, Gonzalez l. Detecting spatial and temporal patterns in NDVI time series using histograms[J]. International Journal of Remote Sensing, 2002, 28(2):275-290. 
[19]Jeff K.User-specified bi-directional reflectance functions[EB/OL].http:// stratus. ssec wisc. Edu/streamer/useman/surfalb.html. 
[20]Zhen Lizhong(郑立中), Cheng Wanxiu(陈万秀). The review of current remote sensing application sand global position techniques in China[J]. Remote Sensing Information(遥感信息), 2000,1:1-4(in Chinese). 
[21]Ha Sibagan(哈斯巴干), Ma Jianwen(马建文), Li Qiqing(李启青). Aster data classification using selforgnizing neural network methods[J].Advance in Earth Sciences(地球科学进展), 2003,18(3):345-350(in Chinese). 
[22]Sun Shu(孙枢). Earth data—An important resources for geoscience innovation[J]. Advance in Earth Sciences(地球科学进展),2003,18(3):334-337(in Chinese). 
[23] Sun Honglie(孙鸿烈), Liu Chuang(刘闯). Study on frontiers of world scientific data[J].Advance in Earth Science(地球科学进展),2003,18(3): 329-333(in Chinese).

文章导航

/