青促会之地球科学领域

非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用

  • 段晚锁 ,
  • 秦晓昊
展开
  • 1.中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2.中国科学院大学海洋学院,北京 101408
段晚锁(1973-),男,山西阳城人,研究员,主要从事海气相互作用,以及台风、厄尔尼诺、印度洋偶极子等高影响天气、气候事件和海洋中尺度涡的可预报性、目标观测、资料同化和集合预报等研究. E-mail:duanws@lasg.iap.ac.cn
秦晓昊(1983-),女,湖南湘潭人,副研究员,主要从事热带气旋的可预报性、目标观测、资料同化和集合预报等研究. E-mail: xhqin@lasg.iap.ac.cn

收稿日期: 2021-12-22

  修回日期: 2022-01-19

  网络出版日期: 2022-03-08

基金资助

国家重点研发计划项目“台风目标观测研究”(2018YFC1506402);国家自然科学基金项目“非线性强迫奇异向量—集合预报方法及其在厄尔尼诺和台风可预报性研究中的应用”(41930971)

Application of Nonlinear Optimal Perturbation Methods in the Targeting Observations and Field Campaigns of Tropical Cyclones

  • Wansuo DUAN ,
  • Xiaohao QIN
Expand
  • 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
    2.College of Marine Science,University of Chinese Academy of Sciences,Beijing 101408,China
DUAN Wansuo
DUAN Wansuo (1973-), Yangcheng County, Shanxi Province, Professor. Research areas include air-sea interaction, as well as the predictability, targeting observation, data assimilation and ensemble forecasts of high-impact weather and climate events. E-mail: duanws@lasg.iap.ac.cn
QIN Xiaohao. Application of nonlinear optimal perturbation methods in the targeting observations and field campaigns of tropical cyclones[J].
QIN Xiaohao (1983-), female, Xiangtan City, Hunan Province, Associate professor. Research areas include the predictability, targeting observation, data assimilation, and ensemble forecasts of tropical cyclones. E-mail: xhqin@lasg.iap.ac.cn

Received date: 2021-12-22

  Revised date: 2022-01-19

  Online published: 2022-03-08

Supported by

the National Key Research and Development Program "Targeting observation research on typhoons"(2018YFC1506402);The National Natural Science Foundation of China "The nonlinear forcing singular vector-ensemble forecast method and its application in the predictability study in El Ni?o and tropical cyclone"(41930971)

摘要

综述了我国学者近年来用非线性最优扰动方法探索热带气旋目标观测及其外场试验的主要进展,具体包括:从提高数值模式初始场精度的角度,用条件非线性最优扰动方法确定了热带气旋路径和强度预报的目标观测敏感区,并成功应用于“风云四号”气象卫星和下投探空仪台风目标观测外场试验,助力业务部门获得了宝贵资料。从减小模式误差或外强迫不确定性的角度,将非线性强迫奇异向量方法应用于探讨热带气旋强度预报的敏感性,揭示了模式误差的敏感气象要素和敏感区,以及海表温度强迫的敏感区;用集合扰动的思路识别了热带气旋快速增强过程预报的行星边界层的模式误差敏感区。讨论了目前热带气旋目标观测研究存在的问题以及可能的解决方法,展望了未来热带气旋目标观测研究应努力的前沿方向,及其在实际预报中的应用前景。

本文引用格式

段晚锁 , 秦晓昊 . 非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用[J]. 地球科学进展, 2022 , 37(2) : 165 -176 . DOI: 10.11867/j.issn.1001-8166.2022.010

Abstract

The authors review the major progresses in the targeting observations and field campaigns for Tropical Cyclones (TCs) using their proposed nonlinear optimal perturbation methods. They used condition nonlinear optimal perturbation, which aims at reducing the initial errors for numerical models, to identify the sensitive regions for TC track and intensity forecasts. This guides both FY-4 satellite and dropsonde in the field campaigns to effectively collect valuable observation data. Furthermore, they investigated the sensitivity of TC intensity forecast to model errors using nonlinear forcing singular vector, which indicates both the sensitive regions and variables in troposphere and the sensitive regions of sea surface temperature. Simultaneously, they also identified the sensitive regions and variables in the boundary layer during a rapid intensification process of a TC using ensemble perturbation method. In final the unresolved problems, possible solutions, and future recommendations in the targeting observations for TCs are discussed.

参考文献

1 ZHANG Q, WU L, LIU Q. Tropical cyclone damages in China 1983-2006[J]. Bulletin of the American Meteorological Society, 2009, 90: 489-495.
2 BURPEE R W, FRANKLIN J L, LORD S J, et al. The impact of Omega dropwindsondes on operational hurricane track forecast models[J]. Bulletin of the American Meteorological Society, 1996, 77: 925-933.
3 WU C C, LIN P H, ABERSON S D, et al. Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): an overview[J]. Bulletin of the American Meteorological Society, 2005, 86: 787-790.
4 ABERSON S D. Ten years of hurricane synoptic surveillance (1997-2006) [J]. Monthly Weather Review, 2010, 138: 1 536-1 549.
5 BRAUN S A, NEWMAN P A, HEYMSFIELD G M. NASA's Hurricane and Severe Storm Sentinel (HS3) investigation[J]. Bulletin of the American Meteorological Society, 2016, 97: 2 085-2 102.
6 BLACK P G, HARRISON L, BEAUBIEN M, et al. High Definition Sounding System (HDSS) for atmospheric profiling[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34: 777-796.
7 FENG J, WANG X G. Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of hurricane patricia (2015)[J]. Monthly Weather Review, 2019, 147: 3 069-3 088.
8 SNYDER C. Summary of an informal workshop on adaptive observations and FASTEX[J]. Bulletin of the American Meteorological Society, 1996, 77: 953-961.
9 BUIZZA R, PALMER T N. The singular-vector structure of the atmospheric global circulation[J]. Journal of Atmospheric and Oceanic Technology, 1995, 52: 1 434-1 456.
10 MAJUMDAR S J, BISHOP C H, BUIZZA R, et al. A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance[J]. Quarterly Journal of the Royal Meteorological, 2002, 128: 2 527-2 549.
11 WU C C, CHOU K H, LIN P H, et al. The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR[J]. Weather Forecasting, 2007, 22: 1 157- 1 176.
12 WEISSMANN M, HARNISCH F, WU C C,et al. The influence of assimilating dropsonde data on typhoon track and mid-latitude forecasts[J]. Monthly Weather Review, 2011, 139: 908-920.
13 MU M, ZHOU F F, WANG H L. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation[J]. Monthly Weather Review, 2009, 137: 1 623-1 639.
14 MU M, DUAN W S, WNAG B. Conditional nonlinear optimal perturbation and its applications[J]. Nonlinear Processes Geophysics, 2003, 10: 493-501.
15 QIN X H, MU M. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts[J]. Quarterly Journal of the Royal Meteorological, 2011, 138: 185-197.
16 CHEN B Y, MU M, QIN X H. The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts[J]. Monthly Weather Review, 2013, 141: 2 669-2 682.
17 QIN X H, DUAN W S, CHAN P W, et al. Effects of dropsonde data in field campaigns on forecasts of tropical cyclones over the western North Pacific in 2020 and role of CNOP sensitivity[J]. Advances in Atmospheric Sciences, 2022, in revision.
18 DEMARIA M, SAMPSON C R, KNAFF J A, et al. Is tropical cyclone intensity guidance improving? [J]. Bulletin of the American Meteorological Society, 2014, 95: 387-398.
19 EMANUEL K, ZHANG F Q. On the predictability and error sources of tropical cyclone intensity forecasts[J]. Journal of the Atmospheric Sciences, 2016, 73: 3 739-3 747.
20 EMANUEL K, ZHANG F Q. The role of inner-core moisture in tropical cyclone predictability and practical forecast skill[J]. Journal of the Atmospheric Sciences, 2017, 74: 2 315-2 324.
21 GENTRY M S, LACKMANN G M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Monthly Weather Review, 2010, 138: 688-704.
22 GREEN B W, ZHANG F Q. Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones[J]. Monthly Weather Review, 2013, 141: 2 303-2 324.
23 TORN R D. Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts[J]. Monthly Weather Review, 2016, 144: 3 487-3 506.
24 LEUTBECHER M, LOCK S J, OLLINAHO P, et al. Stochastic representations of model uncertainties at ECMWF: state of the art and future vision[J]. Quarterly Journal of the Royal Meteorological, 2017, 143: 2 315-2 339.
25 DUAN W S, ZHOU F F. Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model[J]. Tellus A, 2013, 65: 18452.
26 BUIZZA R, MILLEER M, PALMER T N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological, 1999, 125: 2 887-2 908.
27 BERNER J, SHUTTS GJ, LEUTBECHER M, et al. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system[J]. Journal of the Atmospheric Sciences, 2009, 66: 603-626.
28 BARKMEIJER J, IVERSEN T, PALMER T N. Forcing singular vectors and other sensitive model structures[J]. Quarterly Journal of the Royal Meteorological, 2003, 129: 2 401-2 423.
29 DUAN W S, ZHAO P. Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Ni?o predictions by nonlinear forcing singular vector approach[J]. Climate Dynamics, 2015, 44(9): 2 351-2 367.
30 QIN X H, DUAN W S, XU H. Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF[J]. Advances in Atmospheric Sciences, 2020, 37(3): 291-306.
31 YAO J W, DUAN W S, QIN X H. Which features of the SST forcing error most likely disturb the simulation of tropical cyclone intensity?[J]. Advances in Atmospheric Sciences, 2021, 38(4): 581-602.
32 DUAN W S, LI X Q, TIAN B. Towards optimal observational array for dealing with challenges of El Ni?o-Southern Oscillation predictions due to diversities of El Ni?o[J]. Climate Dynamics, 2018. DOI:10.1007/s00382-018-4082-x .
33 GRAY W M. Tropical cyclone genesis and intensification[M]// Bengtsson L, Lighthill J. Intense atmospheric vortices. Springer-Verlag, 1982:3-20.
34 SCHADE L R, EMANUEL K. The ocean's effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model[J]. Journal of the Atmospheric Sciences, 1999, 56: 642-651.
35 HONG X, CHANG S W, RAMAN S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Culf of Mexico[J]. Monthly Weather Review, 2000, 128: 1 347-1 365.
36 SCHADE L R. Tropical cyclone intensity and sea surface temperature[J]. Journal of the Atmospheric Sciences, 2000, 57: 3 122-3 130.
37 KILIC C, RAIBLE C C. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF[J]. Meteorologische Zeitschrift, 2014, 22: 685-698.
38 MA Z H, FEI J F, LIU L, et al. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities[J]. Monthly Weather Review, 2017, 145: 1 181-1 201.
39 YAO Jiawei, DUAN Wansuo. Target observation of sea surface temperature for tropical cyclone intensity simulation [J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 1-16.
39 姚佳伟, 段晚锁. 台风强度模拟的海温目标观测研究[J]. 大气科学, 2022, 46(1): 1-16.
40 SMITH R K, MONTGOMERY M T, SANG N VAN. Tropical cyclone spin-up revisited[J]. Quarterly Journal of the Royal Meteorological, 2009, 135: 1 321-1 335.
41 HUANG Y H, MONTGOMERY M T, WU C C. Concentric eyewall formation in typhoon Sinlaku (2008). Part II: axisymmetric dynamical processes[J]. Journal of the Atmospheric Sciences, 2012, 69: 662-674.
42 SCHMIDT C J, SMITH R K. Tropical cyclone evolution in a minmal axisymmetric model revisited[J]. Quarterly Journal of the Royal Meteorological, 2016, 142: 1 505-1 516.
43 MONTGOMERY M T, SMITH R K. Recent developments in the fluid dynamics of tropical cyclones[J]. Annual Review of Fluid Mechanics, 2017, 49: 541-574.
44 HENG J, WANG Y, ZHOU W. Revisiting the balanced and unbalanced aspects of tropical intensification[J]. Journal of the Atmospheric Sciences, 2017, 74: 2 575-2 791.
45 LI Y L, WANG Y Q, LIN Y L. How much does the upward advectionof the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity?[J]. Journal of the Atmospheric Sciences, 2020, 77: 2 649-2 664.
46 FEI R, WANG Y Q, LI Y L. Contribution of vertical advection to supergradient wind in tropical cyclone boundary layer: a numerical study[J]. Journal of the Atmospheric Sciences, 2021, 78: 1 057-1 073.
47 ZHANG J A, ROGERS R F. Effects of parameterized boundary layer structure on hurricane rapid intensification in shear[J]. Monthly Weather Review, 2019, 147: 853-870.
48 CHEN X M, XUE M, ZHOU B W, et al. Effects of scale-aware planetary boundary layer schemes on tropical cyclone intensification and structural changes in the gray zone[J]. Monthly Weather Review, 2021, 149: 2 079-2 095.
49 QIN X H, DUAN W S. Forecast uncertainty of rapid intensification of typhoon dujuan (201521) induced by uncertainty in the boundary layer[J]. Atmosphere, 2020, 11(1 263): 1-17.
50 HONG SY, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134: 2 318-2 341.
51 LANGLAND R H, TOTH Z, RELARO R, et al. The North Pacific Experiment (NORPEX-98): targeted observations for improved North American weather forecasts[J]. Bulletin of the American Meteorological Society, 1999, 80: 1 363-1 384.
52 MU M. Methods, current status, and prospect of targeted observation[J]. Science China: Earth Sciences, 2013, 56(12): 1 997-2 005.
53 DUAN W S, HUO Z H. An approach to generating mutually independent initial perturbations for ensemble forecasts: orthogonal conditional nonlinear optimal perturbations[J]. Journal of the Atmospheric Sciences, 2016, 73(3): 997-1 014.
54 HUO Z H, DUAN W S. The application of the orthogonal conditional nonlinear optimal perturbations method to typhoon track ensemble forecasts[J]. Science China: Earth Sciences, 2018. DOI:10.1007/s11430-018-9248-9 .
55 HUO Z H, DUAN W S, ZHOU F F. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations[J]. Advances in Atmospheric Sciences, 2019, 36(2): 231-247.
56 WANG Ye, DUAN Wansuo. Influences of initial perturbation amplitudes and ensemble sizes on the ensemble forecasts made by CNOPs method [J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 919-933.
56 汪叶,段晚锁. 初始扰动振幅和集合样本数对CNOPs集合预报的影响[J]. 大气科学,2019,43(4):919-933.
57 BAUER P, THORPE A, BRUNET G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525: 47-55.
58 TAO L J, DUAN W S. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting[J]. Weather and Forecasting, 2019, 34:1 321-1 342.
文章导航

/