“青促会成立10周年之地球科学领域”专刊

水体稳定同位素在青藏高原大气环流研究中的应用

  • 杨晓新
展开
  • 中国科学院青藏高原研究所 青藏高原地球系统与资源环境全国重点实验室,北京 100101
杨晓新(1981-),女,河南原阳人,研究员,主要从事水体中的稳定同位素与大气环流研究. E-mail: xxy@itpcas.ac.cn

收稿日期: 2021-09-30

  修回日期: 2021-12-03

  网络出版日期: 2022-01-29

基金资助

国家自然科学基金面上项目“通过降水和冰芯稳定同位素揭示ENSO对‘第三极’南北部水汽来源的影响”(41571074);第二次青藏高原综合科学考察研究(2019QZKK0208)

Water Stable Isotopes and Their Applications to the Study of Atmospheric Circulations on the Tibetan Plateau

  • Xiaoxin YANG
Expand
  • State Key Laboratory of Tibetan Plateau Earth System,Resources and Environment (TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
YANG Xiaoxin (1981-), female, Yuanyang City, Henan Province, Professor. Research areas include variations of water stable isotopes and their indications of atmospheric circulations. E-mail: xxy@itpcas.ac.cn

Received date: 2021-09-30

  Revised date: 2021-12-03

  Online published: 2022-01-29

Supported by

the National Natural Science Foundation of China "Study of ENSO influences on moisture supplies to the northern and southern Third Pole from stable isotopes in precipitation and ice cores"(41571074);The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(2019QZKK0208)

摘要

水体稳定同位素作为贯穿水循环的介质,是研究大气环流过程和传输路径的有效手段。介绍了水体稳定同位素技术在青藏高原大气环流研究中的应用,聚焦典型站点降水、河水和冰芯等水体稳定同位素的季节和空间变化特征,揭示了大气环流对地表水稳定同位素高程效应的显著影响,以及大气降水对地表水的主导;引入降水稳定同位素标准判断亚洲夏季风爆发时间;通过冰芯稳定同位素揭示了厄尔尼诺—南方涛动对整个青藏高原水循环的影响及其响应机制的区域差异。在未来的研究中,将加强跟地球系统模型的结合,关注水体稳定同位素在不同时间尺度的控制因子、突变过程以及激发机制,进而量化古气候替代指标中的稳定同位素变化、从较长的时间尺度上重建影响青藏高原的水汽来源的演变历史。同时关注过量氘等具有水汽来源诊断能力的参数,研究其与大尺度环流参数的相关性,从海表温度、蒸发等陆—气相互作用分析并将高原环流过程与全球环流过程紧密结合综合分析。

本文引用格式

杨晓新 . 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022 , 37(1) : 87 -98 . DOI: 10.11867/j.issn.1001-8166.2021.122

Abstract

Water stable isotopes (δ) are inherent in the water cycle, changing during water phase changes, and hence widely used to study moisture trajectory and water cycle. Their application to the study of atmospheric circulations over the Tibetan Plateau (TP) has led to a comprehensive understanding in the past decades. This review focuses on field sampling across the extensive TP, and summarizes the spatial and temporal variation patterns in water stable isotopes in precipitation, surface water and ice cores. Complex circulation patterns are found to affect the altitude effect in water stable isotopes, so that monsoon yields a smaller altitudinal lapse rate than westerly, which in extreme cases can result in increasing isotopic composition with increasing altitudes; though the precipitation isotopes have a prevailing dominance over surface water isotopic features. The sensitive response of precipitation stable isotopes to convection is also applied to the judgement of monsoon onset based on abrupt, continuous and significant decrease in δ. Accordingly, the submonsoon system is found to onset earlier over the Bay of Bengal than the South China Sea and varies diversely under global warming. A long-term perspective into atmospheric circulation over the Tibetan Plateau from ice core δ reveals significant impacts of El Nin?o-Southern Oscillation (ENSO) on the TP, with a dampening effect on the temperature significance of ice core isotopes in the southern TP under the monsoon dominance, while a lagged correlation between ENSO and ice core isotopes in the northwestern TP; all pointing to possible teleconnections between TP climates and sea surface temperature. In future studies, the Earth system models will be relied upon to help reveal physical mechanisms behind complex water stable isotope variations, and comprehend unique isotope variation patterns under extreme climates. Based on modern precipitation δ variation features and abrupt changes and triggering mechanisms, variation history of moisture sources is to be reconstructed from paleoproxies. Besides, isotopic parameters including deuterium excesses have high meteorological synoptic capacity, and would be applied to the analysis of changes in sea surface temperature or evaporation, and hence to facilitate the understanding of sea-air interactions, and the interactions of circulation patterns and water cycles on the Tibetan Plateau with global climate changes.

参考文献

1 YE Duzheng. Seasonal variations in Tibetan Plateau's influences on atmospheric circulation[J]. Acta Meteorologica Sinica, 1952 (): 35-49.
1 叶笃正. 西藏高原对于大气环流影响的季节变化[J]. 气象学报, 1952(): 35-49.
2 YE Duzheng, GAO Youxi. Qinghai-Xizang Plateau meteorology[M]. Beijing: Science Press, 1979.
2 叶笃正,高由禧. 青藏高原气象学[M].北京: 科学出版社, 1979.
3 BENN D I, OWEN L A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion[J]. Journal of the Geological Society, 1998, 155(2): 353-363.
4 LIU X, GUO Q, GUO Z, et al. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? [J]. National Science Review, 2015, 2(4): 403-416.
5 YE D. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood[J]. Bulletin American Meteorological Society, 1981, 62(1): 6.
6 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60 (32): 3 025-3 035.
6 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
7 LI Q Q, ZHAO M C, YANG S, et al. A zonally-oriented teleconnection pattern induced by heating of the Western Tibetan Plateau in boreal summer[J]. Climate Dynamics, 2021, 57(9/10): 2 823-2 842.
8 HUANG Ronghui. The thermal effect of the Qinghai-Xizang Plateau on formation and maintenance of the mean monsoon circulation over South Asia in summer[J]. Journal of Tropical Meteorology, 1985, 1(1): 1-8.
8 黄荣辉. 夏季青藏高原对于南亚平均季风环流形成与维持的热力作用[J]. 热带气象学报, 1985, 1(1): 1-8.
9 YASUNARI T. Low-frequency interactions between the summer monsoon and the northern-hemisphere westerlies[J]. Journal of the Meteorological Society of Japan, 1986, 64(5): 693-708.
10 ZHANG Renhe, ZHOU Shunwu. The air temperature change over the Tibetan Plateau during1979-2002 and its possible linkage with ozone depletion[J]. Acta Meteorologica Sinica, 2008, 66 (6): 916-925.
10 张人禾,周顺武. 青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用[J]. 气象学报, 2008, 66(6): 916-925.
11 LI Y, SU F, CHEN D, et al. Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(23): 12 864-12 881.
12 LI P X, ZHOU T J, CHEN X L. Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets[J]. Climate Dynamics, 2018, 51(11/12): 4 243-4 257.
13 MA Y, ZHANG Y, YANG D, et al. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region[J]. International Journal of Climatology, 2015, 35(7): 1 201-1 211.
14 ZHAO Y, ZHOU T J. Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis data sets[J]. Climate Dynamics, 2020, 54(1/2): 231-245.
15 GALEWSKY J, STEEN-LARSEN H C, FIELD R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
16 AGGARWAL P K, ROMATSCHKE U, ARAGUAS-ARAGUAS L, et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios[J]. Nature Geoscience, 2016, 9(8): 624-629.
17 CAI Z Y, TIAN L D. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian Monsoon Region[J]. Journal of Climate, 2016, 29(4): 1 339-1 352.
18 WANG D, TIAN L, CAI Z, et al. Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales[J]. Earth and Planetary Science Letters, 2020, 529: 115837.
19 BOWEN R. Isotope in the Earth sciences[M]. London and New York: Elsevier Science Publishers, 1988.
20 DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Stable isotope glaciology[M]. Copenhagen: Reitzels Forlag C.A., Biango Lunos Bogtrykkeri A/S, 1973.
21 KENDALL C, CALDWELL E A. Fundamentals of isotope geochemistry. in isotope tracers[M]// Kendall C, McDonnell J J. Catchment hydrology. Amsterdam: Elsevier Science B.V., 1988: 51-86.
22 DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
23 WELKER J M. Isotopic (delta O-18) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies[J]. Hydrological Processes, 2000, 14(8): 1 449-1 464.
24 STERN L A, Blisniuk P M. Stable isotope composition of precipitation across the southern Patagonian Andes[J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D23). DOI:10.1029/2002JD002509.
25 LONGINELLI A, SELMO E. Isotopic composition of precipitation in Italy: a first overall map[J]. Journal of Hydrology, 2003, 270(1/2): 75-88.
26 ZHAO H, XU B, LI Z, et al. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau[J]. Climate Dynamics, 2016, 48(3/4): 1 161-1 171.
27 CIAIS P, JOUZEL J. Deuterium and oxygen 18 in precipitation: isotopic model, including mixed cloud processes[J]. Journal of Geophysical Research:Atmospheres, 1994, 99: 16 793-16 803.
28 STEWART M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes[J]. Journal of Geophysical Research (1896-1977), 1975, 80(9): 1 133-1 146.
29 WORDEN J, NOONE D, BOWMAN K, et al. Importance of rain evaporation and continental convection in the tropical water cycle[J]. Nature, 2007, 445: 528-532.
30 YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51. DOI: 8755-1209/13/10.1002/rog.20023.
31 YAO T, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
32 YANG X, YAO T. Seasonality of moisture supplies to precipitation over the Third Pole: a stable water isotopic perspective[J]. Scientific Reports, 2020, 10(1). DOI: 10.1038/s41598-020-71949-0.
33 CAI Z, TIAN L. What causes the postmonsoon 18O Depletion Over Bay of Bengal head and beyond? [J]. Geophysical Research Letters, 2020, 47(4): e2020GL086985.
34 SODEMANN H, ZUBLER E. Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995-2002[J]. International Journal of Climatology, 2010, 30(7): 947-961.
35 KURITA N, SUGIMOTO A, FUJII Y, et al. Isotopic composition and origin of snow over Siberia[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D13). DOI: 10.1029/2004JD005053.
36 DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218.
37 BOTSYUN S, SEPULCHRE P, DONNADIEU Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6 430): eaaq1436.
38 KANG Shichang, QIN Dahe, YAO Tandong, et al. Characteristics of δ18O in precipitation during summer monsoon season in high elevation of the Dasuopu Glacier, Mount Xixiabangma[J]. Journal of Mountain Science, 2000, 18(1): 1-6.
38 康世昌, 秦大河, 姚檀栋, 等. 希夏邦马峰达索普冰川高海拔区夏季风期间大气降水的δ18O特征[J]. 山地学报, 2000, 18(1): 1-6.
39 KONG Y, PANG Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: effects of moisture recycling and sub-cloud evaporation[J]. Journal of Hydrology, 2016, 542: 222-230.
40 YANG Xiaoxin, XU Baiqing, YANG Wei, et al. Study of altitudinal lapse rates of delta O-18 in precipitation/river water with seasons on the southeast Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54 (16): 2 742-2 750.
40 杨晓新, 徐柏青, 杨威,等. 藏东南不同季节水体中氧同位素的高程递减变化研究[J]. 科学通报, 2009, 54(16): 2 742-2 750.
41 YANG Xiaoxin, XU Baiqing, YANG Wei, et al. The Indian monsoonal influence on altitude effect of δ18O in surface water on southeast Tibetan Plateau[J]. Science in China: Earth Scicnce, 2012, 55 (3): 438-445.
41 杨晓新, 徐柏青, 杨威, 等. 印度季风期对青藏高原东南部地表水体δ18O高程效应的影响[J]. 中国科学:地球科学, 2012, 55(3): 438-445.
42 YAO Tandong, ZHOU Hang, YANG Xiaoxin. Indian monsoon influences altitude effect of delta O-18 in precipitation/river water on the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54 (16): 2 724-2 731.
42 姚檀栋, 周行,杨晓新. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响[J]. 科学通报, 2009, 54(16): 2 724-2 731.
43 MCGUFFIE K, HENDERSON-SELLERS A. Stable water isotope characterization of human and natural impacts on land-atmosphere exchanges in the Amazon Basin[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D17). DOI:10.1029/2003JD004388.
44 PENG T R, WANG C H, HUANG C C, et al. Stable isotopic characteristic of Taiwan's precipitation: a case study of western Pacific monsoon region[J]. Earth and Planetary Science Letters, 2010, 289(3/4): 357-366.
45 YANG X, YAO T. Different sub-monsoon signals in stable oxygen isotope in daily precipitation to the northeast of the Tibetan Plateau[J]. Tellus B, 2016, 68. DOI:10.3402/tellusb.v68.27922.
46 JOUZEL J, MERLIVAT L. Deuterium excess in an East Antarctic ice core suggests higher relative-humidity at the oceanic surface during the Last Glacial Maximum[J]. Nature, 1982, 299: 688-691.
47 UEMURA R, MATSUI Y, YOSHIMURA K, et al. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D19). DOI:10.1029/2008JD010209.
48 ACHARYA S, YANG X, YAO T, et al. Stable isotopes of precipitation in Nepal Himalaya highlight the topographic influence on moisture transport[J]. Quaternary International, 2020, 565: 22-30.
49 YANG X, YAO T, YANG W, et al. Isotopic signal of earlier summer Monsoon onset in the Bay of Bengal[J]. Journal of Climate, 2012, 25: 2 509-2 516.
50 YANG X, DAVIS M, ACHARYA S, et al. Asian monsoon variations revealed from stable isotopes in precipitation[J]. Climate Dynamics, 2017. DOI:10.1007/s00382-017-4011-4.
51 YU W, YAO T, TIAN L, et al. Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes[J]. Climate Dynamics, 2016, 47(1): 159-172.
52 YU W S, YAO T D, THOMPSON L G, et al. Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation delta O-18[J]. Earth and Planetary Science Letters, 2021, 554. DOI:10.1007/s00382-015-2829-1.
53 PANG Hongxi. Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas[J]. The Cryosphere, 2014, 8: 289-301.
54 AN W, HOU S, ZHANG W, et al. Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records[J]. Scientific Reports, 2016, 6: 32813.
55 TIAN L, YAO T, ZHEN L, et al. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D13). DOI:10.1029/2005JD006249.
56 PANG H, HOU S, KASPARI S, et al. Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas[J]. The Cryosphere, 2014, 8(1): 289-301.
57 YANG X, YAO T, JOSWIAK D, et al. Integration of Tibetan Plateau ice-core temperature records and the influence of atmospheric circulation on isotopic signals in the past century[J]. Quaternary Research, 2014, 81. DOI:10.1016/j.yqres.2014.01.006.
58 YANG X, YAO T, DEJI, et al. Possible ENSO influences on the Northwestern Tibetan Plateau revealed by annually resolved ice core records[J]. Journal of Geophysical Research: Atmospheres, 2018, 123. DOI: 10.1002/2017JD027755.
59 DEJI, YAO T D, YANG X X, et al. Warming and wetting climate during last century revealed by an ice core in northwest Tibetan Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 487: 270-277.
60 LAU N C, WANG B. Interactions between the Asian monsoon and the El Nin?o/Southern Oscillation[M]// Wang B. The Asian Monsoon. Berlin Heidelberg: Springer, 2006.
文章导航

/