收稿日期: 2021-07-06
修回日期: 2021-10-03
网络出版日期: 2022-01-20
基金资助
国家自然科学基金项目“末次冰消期以来湖北神农架大九湖泥炭湿地产甲烷生物地球化学过程对气候环境变化的响应”(42073072);“地质脂类记录的中国中东部晚中新世以来水热格局的时空演化”(41830319)
Application of Microbial Ether Lipids in the Reconstruction of Paleoenvironments in Peatlands: Progress and Problems
Received date: 2021-07-06
Revised date: 2021-10-03
Online published: 2022-01-20
Supported by
the National Natural Science Foundation of China "The response of methanogenic biogeochemical cycles to climate change in Dajiuhu peatland from Shennongjia, Hubei since the last deglaciation"(42073072);"Spatiotemporal evolution of hydroclimate and temperature pattern in central and eastern China recorded by geolipids since late Miocene"(41830319)
泥炭是研究古环境的良好载体,也是陆地重要的有机碳库。泥炭中微生物醚类化合物结构多样、含量丰富、生物来源较为明确,其分布主要受温度、pH和氧化还原状况的影响,可以作为古环境重建的代用指标,也是甲烷循环等生物地球化学过程的示踪计。一些微生物醚类如GMGTs、isoGDGTs异构体和BDGTs的含量可能被开发为泥炭新的古环境和产甲烷作用指标。当前,醚类在泥炭古环境重建和产甲烷作用重建中还存在一些问题,包括pH指标与有效降水量之间的关系不明确,沉积相转变对泥炭古环境重建和产甲烷活动重建可能存在影响,brGDGTs重建温度存在不确定性,需要进一步研究。
樊嘉琛 , 钱施 , 裴宏业 , 吴杰 , 赵世锦 , 党心悦 , 杨欢 , 谢树成 . 微生物醚类化合物在泥炭古环境重建中的应用:进展与问题[J]. 地球科学进展, 2021 , 36(12) : 1272 -1290 . DOI: 10.11867/j.issn.1001-8166.2021.095
Peat is a good archive for paleoenvironment reconstruction and an important terrestrial organic carbon sink. Microbial ether lipids in peatlands are structurally diverse and rich in abundance, and most of these lipids have been thought to be derived from specific biological sources. Their distributions are mainly controlled by temperature, pH and redox conditions, etc. They can be used as proxies for the reconstruction of paleoenvironments, such as temperature, water table and redox conditions and also as tracers of biogeochemical processes, e.g., methane cycling. Microbial ether lipids identified in peatlands can be divided into seven groups: archaeol and OH-archaeol, isoGDGTs and OH-isoGDGTs, brGDGTs, BDGTs and PDGTs, isoGMGTs and brGMGTs, Me-isoGDGTs and Me-isoGMGTs, and GDDs. Here we introduced the structures, biological sources of these ether lipids, and environmental factors influencing their distributions in global peatlands. We showed how microbial ether lipid-based proxies for the reconstruction of the peat paleoenvironment were developed and discussed their advantages and disadvantages. We also discussed the application of microbial ether lipids in indicating methane cycling in peatlands. The abundance of some microbial ether lipids such as GMGTs, isoGDGT isomers and BDGTs can be developed as new proxies for the reconstruction of the paleoenvironment (paleotemperature, paleo-pH, paleohydrology) and methanogenesis in peatlands. At present, some problems may still exist in the application of microbial ether lipids to the reconstruction of peat paleoenvironment and methanogenesis, including the unclear relationships of pH proxies and effective precipitation, the impact of sedimentary facies on the brGDGT-based reconstructions, the uncertainty of brGDGT-based proxies, and the influence of insoluble ether lipids. This highlight further research is needed to resolve these issues. In addition, several aspects need to be paid attention to in future studies, including further determining factors influencing microbial ether lipids in peatlands, understanding the role of methanogenesis in boreal peatlands in regulating the atmospheric CH4 concentration, and introducing some new technologies.
Key words: Peat; GDGTs; Microbial ethers; Paleoenvironment reconstruction
1 | YU Zicheng, LOISEL J, BROSSEAU D P, et al. Global peatland dynamics since the last glacial maximum[J]. Geophysical Research Letters, 2010, 37(13): 69-73. |
2 | YU Zicheng, BEILMAN D W, FROLKING S, et al. Peatlands and their role in the global carbon cycle[J]. EOS, Transactions American Geophysical Union, 2011, 92(12): 97-98. |
3 | HUGELIUS G, LOISEL J, CHADBURN S, et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw[J]. Proceedings of the National Academy of Sciences, 2020, 117(34): 20 438-20 446. |
4 | K?CHY M, HIEDERER R, FREIBAUER A. Global distribution of soil organic carbon-part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world[J]. Soil, 2015, 1(1): 351-365. |
5 | NAAFS B D A, INGLIS G N, BLEWETT J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: a review[J]. Global and Planetary Change, 2019, 179: 57-79. |
6 | WEIJERS J W H, SCHOUTEN S, HOPMANS E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648-657. |
7 | DONGEN B E VAN, TALBOT H M, SCHOUTEN S, et al. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006, 37(5): 539-557. |
8 | OGER P M, CARIO A. Adaptation of the membrane in Archaea[J]. Biophysical Chemistry, 2013, 183(24): 42-56. |
9 | NISHIHARA M, MORII H, KOGA Y. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum[J]. The Journal of Biochemistry, 1987, 101(4): 1 007-1 015. |
10 | ELLING F J, K?NNEKE M, NICOL G W, et al. Chemotaxonomic characterisation of the Thaumarchaeal lipidome[J]. Environmental Microbiology, 2017, 19(7): 2 681-2 700. |
11 | LIU Yuchen, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea[J]. Annals of the New York Academy of Sciences, 2008, 1 125(1): 171-189. |
12 | BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens[J]. Applied and Environmental Microbiology, 2016(15): 4 505-4 516. |
13 | VILLANUEVA L, SINNINGHE DAMSTé J S, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6): 438-448. |
14 | KOGA Y, MORII H, AKAGAWA-MATSUSHITA M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(2): 230-236. |
15 | BESSELING M A, HOPMANS E C, CHRISTINE BOSCHMAN R, et al. Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone[J]. Biogeosciences, 2018, 15(13): 4 047-4 064. |
16 | G?RRES C M, CONRAD R, PETERSEN S O. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat[J]. Fems Microbiology Ecology, 2013, 85(2): 227-240. |
17 | SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTé J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61. |
18 | LIU Xiaolei, LIPP J S, SIMPSON J H, et al. Mono and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89: 102-115. |
19 | WEIJERS J W H, PANOTO E, SCHOUTEN S, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26(6): 402-414. |
20 | YANG Huan, XIAO Wenjie, S?OWAKIEWICZ M, et al. Depth-dependent variation of archaeal ether lipids along soil and peat profiles from southern China: implications for the use of isoprenoidal GDGTs as environmental tracers[J]. Organic Geochemistry, 2019, 128: 42-56. |
21 | MEADOR T B, GAGEN E J, LOSCAR M E, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability[J]. Frontiers in Microbiology, 2014, 5: 10. |
22 | KNAPPY C, BARILLà D, CHONG J, et al. Mono-, di-and trimethylated homologues of isoprenoid tetraether lipid cores in Archaea and environmental samples: mass spectrometric identification and significance[J]. Journal of Mass Spectrometry, 2015, 50(12): 1 420-1 432. |
23 | BAUERSACHS T, WEIDENBACH K, SCHMITZ R A, et al. Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic Archaea[J]. Organic Geochemistry, 2015, 83: 101-108. |
24 | LIU Xiaolei, SUMMONS R E, HINRICHS K U. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2 295-2 302. |
25 | SUNAMURA M, KOGA Y, OHWADA K. Biomass measurement of methanogens in the sediments of Tokyo Bay using archaeol lipids[J]. Marine Biotechnology, 1999, 1(6): 562-568. |
26 | URBANOVá Z, BáRTA J. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types[J]. FEMS Microbiology Ecology, 2014, 90(3): 633-646. |
27 | PANCOST R D, MCCLYMONT E L, BINGHAM E M, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs[J]. Organic Geochemistry, 2011, 42(10): 1 279-1 287. |
28 | ZHENG Yanhong, SINGARAYER J S, CHENG Peng, et al. Holocene variations in peatland methane cycling associated with the asian summer monsoon system[J]. Nature Communications, 2014, 5(1): 1-7. |
29 | TORRES L C, PANCOST R D. Insoluble prokaryotic membrane lipids in a sphagnum peat: implications for organic matter preservation[J]. Organic Geochemistry, 2016, 93: 77-91. |
30 | LUPASCU M, WADHAM J L, HORNIBROOK E R C, et al. Methanogen biomarkers in the discontinuous permafrost zone of Stordalen, Sweden[J]. Permafrost and Periglacial Processes, 2014, 25(4): 221-232. |
31 | WEIJERS J W H, SCHOUTEN S, LINDEN M VAN DER, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a swedish peat bog[J]. FEMS Microbiology Letters, 2004, 239(1): 51-56. |
32 | BLEWETT J, NAAFS B D A, GALLEGO-SALA A V, et al. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands[J]. Organic Geochemistry, 2020, 148: 104080. |
33 | GIRKIN N T, LOPES DOS SANTOS R A, VANE C H, et al. Peat properties, dominant vegetation type and microbial community structure in a tropical peatland[J]. Wetlands, 2020, 40(5): 1 367-1 377. |
34 | ZHENG Yanhong, LI Qiyuan, WANG Zhangzhang, et al. Peatland GDGT records of Holocene climatic and biogeochemical responses to the asian monsoon[J]. Organic Geochemistry, 2015, 87: 86-95. |
35 | XIANG Xing, WANG Ruicheng, WANG Hongmei, et al. Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions[J]. Scientific Reports, 2017, 7(1): 45028. |
36 | PANCOST R D, GEEL B VAN, BAAS M, et al. δ 13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits[J]. Geology, 2000, 28(7): 663-666. |
37 | NAAFS B D A, ROHRSSEN M, INGLIS G N, et al. High temperatures in the terrestrial mid-latitudes during the early Palaeogene[J]. Nature Geoscience, 2018, 11(10): 766-771. |
38 | PITCHER A, RYCHLIK N, HOPMANS E C, et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon[J]. ISME Journal, 2010, 4(4): 542-552. |
39 | ZHENG Yanhong, PANCOST R D, NAAFS B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36-46. |
40 | SINNINGHE DAMSTé J S, RIJPSTRA W I C, HOPMANS E C, et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3[J]. Applied and Environmental Microbiology, 2011, 77(12): 4 147-4 154. |
41 | SINNINGHE DAMSTé J S, RIJPSTRA W I C, HOPMANS E C, et al. Ether-and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4[J]. Applied and Environmental Microbiology, 2014, 80(17): 5 207-5 218. |
42 | PETERSE F, HOPMANS E C, SCHOUTEN S, et al. Identification and distribution of intact polar branched tetraether lipids in peat and soil[J]. Organic Geochemistry, 2011, 42(9): 1 007-1 015. |
43 | HUGUET A, MEADOR T B, LAGGOUN-DéFARGE F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103-116. |
44 | PANCOST R D, SINNINGHE DAMSTé J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1/4): 29-58. |
45 | WEIJERS J W H, WIESENBERG G L B, BOL R, et al. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism[J]. Biogeosciences, 2010, 7(3): 2 959-2 973. |
46 | COLCORD D E, PEARSON A, BRASSELL S C. Carbon isotopic composition of intact branched GDGT core lipids in Greenland lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25-32. |
47 | ZHU Chun, MEADOR T B, DUMMANN W, et al. Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments[J]. Rapid Communications in Mass Spectrometry, 2014, 28(4): 332-338. |
48 | COFFINET S, MEADOR T B, MüHLENA L, et al. Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)[J]. Biogeosciences, 2020, 17(2): 317-330. |
49 | MEADOR T B, BOWLES M, LAZAR C S, et al. The archaeal lipidome in estuarine sediment dominated by members of the miscellaneous crenarchaeotal group[J]. Environmental Microbiology, 2015, 17(7): 2 441-2 458. |
50 | NAAFS B D A, MCCORMICK D, INGLIS G N, et al. Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature[J]. Geochimica et Cosmochimica Acta, 2018, 227: 156-170. |
51 | GOLYSHINA O V, LüNSDORF H, KUBLANOV I V, et al. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the Order Thermoplasmatales[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(Pt. 1): 332-340. |
52 | COFFINET S, HUGUET A, WILLIAMSON D, et al. Occurrence and distribution of glycerol dialkanol diethers and glycerol dialkyl glycerol tetraethers in a peat core from SW Tanzania[J]. Organic Geochemistry, 2015, 83: 170-177. |
53 | MEADOR T B, ZHU Chun, ELLING F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin[J]. Organic Geochemistry, 2014, 69: 70-75. |
54 | LIU Xiaolei, BIRGEL D, ELLING F J, et al. From ether to acid: a plausible degradation pathway of glycerol dialkyl glycerol tetraethers[J]. Geochimica et Cosmochimica Acta, 2016, 183: 138-152. |
55 | WEIJERS J W H, SCHOUTEN S, DONKER J C VAN DEN, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713. |
56 | PETERSE F, MEER J VAN DER, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229. |
57 | DE JONGE C, HOPMANS E C, ZELL C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97-112. |
58 | NAAFS B D A, INGLIS G N, ZHENG Yanhong, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285-301. |
59 | BALLANTYNE A P, GREENWOOD D R, SINNINGHE DAMSTé J S, et al. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies[J]. Geology, 2010, 38(7): 603-606. |
60 | WEIJERS J W H, STEINMANN P, HOPMANS E C, et al. Bacterial tetraether membrane lipids in peat and coal: testing the MBT-CBT temperature proxy for climate reconstruction[J]. Organic Geochemistry, 2011, 42(5): 477-486. |
61 | WEIJERS J W H, BERNHARDT B, PETERSE F, et al. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3 179-3 190. |
62 | NICHOLS J E, PETEET D M, MOY C M, et al. Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniques[J]. Holocene, 2014, 24(9): 1 146-1 155. |
63 | COFFINET S, HUGUET A, BERGONZINI L, et al. Impact of climate change on the ecology of the Kyambangunguru crater marsh in southwestern Tanzania during the late Holocene[J]. Quaternary Science Reviews, 2018, 196: 100-117. |
64 | ZHOU Haoda, HU Jianfang, MING Lili, et al. Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years[J]. Chinese Science Bulletin,2011, 56(21): 1 741-1 748. |
64 | 周浩达, 胡建芳, 明荔莉, 等. 150年来若尔盖泥炭沉积支链四醚膜类脂及古环境重建[J]. 科学通报, 2011, 56(21): 1 741-1 748. |
65 | WANG Mengyuan, ZHENG Zhuo, MAN Meiling, et al. Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China[J]. Chemical Geology, 2017, 463: 94-102. |
66 | ZHENG Yanhong, PANCOST R D, LIU Xiaolei, et al. Atmospheric connections with the North Atlantic enhanced the deglacial warming in Northeast China[J]. Geology, 2017, 45(11): 1 031-1 034. |
67 | WU Dandan, CAO Jiantao, JIA Guodong, et al. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109464. |
68 | RAO Zhiguo, GUO Haichun, CAO Jiantao, et al. Consistent long-term Holocene warming trend at different elevations in the Altai Mountains in arid central Asia[J]. Journal of Quaternary Science, 2020, 35(8): 1 036-1 045. |
69 | TANG Xiaotong, NAAFS B D A, PANCOST R D, et al. Exploring the influences of temperature on "H-Shaped" glycerol dialkyl glycerol tetraethers in a stratigraphic context: evidence from two peat cores across the late quaternary[J]. Frontiers in Earth Science, 2021, 8: 477. |
70 | KIM J H, SCHOUTEN S, HOPMANS E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 154-1 173. |
71 | SINNINGHE DAMSTé J S, OSSEBAAR J, SCHOUTEN S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake[J]. Quaternary Science Reviews, 2012, 50: 43-54. |
72 | YANG Huan, PANCOST R D, JIA Chengling, et al. The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential paleothermometer in paleosols[J]. Geomicrobiology Journal, 2016, 33(2): 98-109. |
73 | BOYD E, HAMILTON T, WANG Jinxiang, et al. The role of tetraether lipid composition in the adaptation of thermophilic Archaea to acidity[J]. Frontiers in Microbiology, 2013, 4: 62. |
74 | QIN Wei, CARLSON L, ARMBRUST E V, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 10 979-10 984. |
75 | ELLING F J, K?NNEKE M, MU?MANN M, et al. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic Thaumarchaeal isolates[J]. Geochimica et Cosmochimica Acta, 2015, 171: 238-255. |
76 | NAAFS B D A, GALLEGO-SALA A V, INGLIS G N, et al. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration[J]. Organic Geochemistry, 2017, 106: 48-56. |
77 | DANG Xinyue, YANG Huan, NAAFS B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24-36. |
78 | MAUQUOY D, YELOFF D, GEEL B VAN, et al. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene[J]. Journal of Quaternary Science, 2008, 23(8): 745-763. |
79 | MCLAUGHLIN J W, WEBSTER K L. Alkalinity and acidity cycling and fluxes in an intermediate fen peatland in northern Ontario[J]. Biogeochemistry, 2010, 99(1): 143-155. |
80 | HALL S J, SILVER W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils[J]. Global Change Biology, 2013, 19(9): 2 804-2 813. |
81 | ZHANG Yiming, HUANG Xianyu, WANG Ruicheng, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544: 119622. |
82 | HUGUET A, FOSSE C, LAGGOUN-DéFARGE F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J]. Organic Geochemistry, 2010, 41(6): 559-572. |
83 | ZHENG Yanhong, FANG Zhengkun, FAN Tongyu, et al. Operation of the boreal peatland methane cycle across the past 16 k.y.[J]. Geology, 2019, 48(1): 82-86. |
84 | LIU Xiaolei, LEIDER A, GILLESPIE A, et al. Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in northern germany[J]. Organic Geochemistry, 2010, 41(7): 653-660. |
85 | HUGUET A, FOSSE C, LAGGOUN-DéFARGE F, et al. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland[J]. Geochimica et Cosmochimica Acta, 2013, 105: 294-315. |
/
〈 |
|
〉 |