表土磁学特征揭示的青藏高原及其周边地区的气候边界
收稿日期: 2021-09-23
修回日期: 2021-11-18
网络出版日期: 2022-01-06
基金资助
第二次青藏高原综合科学考察研究项目“粉尘气溶胶及其气候环境效应”(2019QZKK0602);中国科学院青促会优秀会员项目(Y202023)
Magnetic Variations in Surface Soils from the Tibetan Plateau and Its Adjacent Regions: Implications for Delineating the Climatic Boundary
Received date: 2021-09-23
Revised date: 2021-11-18
Online published: 2022-01-06
Supported by
the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) "Dust aerosols and their climatic and environmental effects"(2019QZKK0602);The 2020 Outstanding Members of Youth Innovation Promotion Association, Chinese Academy of Sciences, China(Y202023)
青藏高原及其周边位于东亚季风、印度季风与西风环流系统的交汇地带,是气候变化的敏感区和影响显著区。刻画青藏高原及其邻区降水的空间分布以及干湿气候区边界位置,不仅对深入认识该地区大气环流分布形势具有重要意义,同时还可以进一步加深对欧亚大陆大气环流动力学过程的理解。通过对青藏高原及其周边现代地表沉积岩石磁学参数空间分布特征的综合集成研究,结合300多个气象站点近70年气温和降水数据的详细对比分析,发现降水量是控制青藏高原及其邻区地表土壤磁学性质变化的主要因素,表土磁学性质可以用于揭示高原及其邻区降水的空间分布。已发表及新获取的700余块表土样品成壤相关的磁学参数呈现出显著的空间梯度变化,揭示出北祁连山—横断山以及帕米尔高原—北天山是青藏高原及其周边地区2条重要的成壤强度分界线,其大致分别对应半湿润—半干旱区(400 mm)以及干旱和半干旱区(200 mm)的干湿气候区降水界线。此外,高原北部及其周边多个末次冰期—间冰期以来的风尘沉积剖面磁学参数的空间对比结果,还进一步揭示第四纪冰期时,随着全球变冷,干旱化加剧导致高原北部气候梯度差异显著减小,全球冰量变化可能是控制高原北部气候格局演化的主要因素。
昝金波 , 宁文晓 , 杨胜利 , 方小敏 , 康健 , 罗元龙 . 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022 , 37(1) : 14 -25 . DOI: 10.11867/j.issn.1001-8166.2021.125
The Tibetan Plateau (TP) and its adjacent areas are located in the intersection zone of the East Asian and Indian summer monsoons, and the westerly circulation. Characterizing and interpreting the spatial distribution of precipitation and the climatic boundary across the TP are important for understanding the dynamics of atmospheric circulation in this tectonically and climatically sensitive region. Rock magnetic investigations of surface soils have been successfully used to identify the spatial pattern of climatic gradients in the Eurasian continent and North Africa, especially where meteorological stations are sparse. Here we conducted detailed investigations of the magnetic properties of a large set of surface soil samples, combined with the analysis of some 70 years meteorological dataset to characterize the spatial distribution of precipitation in the TP and its adjacent areas. The results demonstrate that pedogenic intensity decreases significantly as moist air flows across the TP towards the interior, which directly demonstrates the effect of the precipitation gradient on pedogenesis. This finding confirms that rock magnetic investigations of surface soils in the TP and its adjacent areas are an effective method for characterizing the precipitation boundary in this vast area. Based on a synthesis of the rock magnetic and meteorological data, we have clearly defined the presence of two distinct boundaries in pedogenic intensity in the northwestern and southeastern TP, i.e.,the Pamir Plateau-the Tianshan Mountains and the Qilian Mountains-the Hengduan Mountains, which correspond to the critical precipitation boundary between sub-humid to semi-arid and arid regions in the TP and its adjacent areas. Moreover, a comparison of several last glacial-interglacial loess sequences in the northeastern TP demonstrates that during the warm and humid interglacial periods, a steepened rainfall gradient occurred, which can be attributed to the ice sheet recession and increasing temperature and moisture cycles. These findings will provide foundation and boundary conditions for future paleoclimatic reconstructions and climate simulations in the Eurasian continent.
1 | YE Duzheng, GAO Youxi. Qinghai-Xizang Plateau meteorology[M]. Beijing: Science Press, 1979. |
1 | 叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979. |
2 | AN Z, COLMAN S M, ZHOU W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2: 619. |
3 | YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51: 525-548. |
4 | CHEN F, CHEN J, HUANG W, et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. |
5 | MAHER B A, ALEKSEEV A, ALEKSEEVA T. Variation of soil magnetism across the Russia Steppe: its significance for use of soil magnetism as a paleorainfall proxy[J]. Quaternary Science Reviews, 2002, 21(14/15): 1 571-1 576. |
6 | MAHER B A, ALEKSEEV A, ALEKSEEVA T. Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3/4): 321-341. |
7 | GEISS C E, EGLI R, ZANNER C W. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils[J]. Journal of Geophysical Research, 2008, 113: B11102. |
8 | LYONS R, OLDFIELD F, WILLIAMS E. Mineral magnetic properties of surface soils and sands across four North African transects and links to climatic gradients[J]. Geochemistry, Geophysics, Geosystems, 2010, 11: Q08023. |
9 | Houyuan Lü, HAN Jiamao, WU Naiqin, et al. Analysis of the susceptibility and its paleoclimate significance of modern soil in China[J]. Science in China Series B:Chemistry, 1994, 24(12): 1 290-1 297. |
9 | 吕厚远, 韩家懋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学B辑:化学, 1994, 24(12): 1 290-1 297. |
10 | SONG Yang, HAO Qingzhen, GE Junyi, et al. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau[J]. Quaternary Sciences, 2012, 32(4): 679-689. |
10 | 宋扬, 郝青振, 葛俊逸, 等. 黄土高原表土磁化率与气候要素的定量关系研究[J]. 第四纪研究, 2012, 32(4): 679-689. |
11 | LIU Z, LIU Q, TORRENT J, et al. Testing the magnetic proxy χFD/ HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China[J]. Global and Planetary Change, 2013, 110: 368-378. |
12 | NIE J, STEVENS T, SONG Y, et al. Pacific freshening drives Pliocene cooling and Asian monsoon intensification[J]. Scientific Reports, 2014, 4: 5474. |
13 | GAO X, HAO Q, WANG L, et al. The different climatic response of pedogenic hematite and ferrimagnetic minerals: evidence from particle-sized modern soils over the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2018, 179: 69-86. |
14 | ZAN J, FANG X, NIE J, et al. Magnetic properties of surface soils across the southern Tarim Basin and their relationship with climate and source materials[J]. Chinese Science Bulletin, 2011, 56: 153-160. |
15 | ZAN J, FANG X, APPEL E, et al. New insights into the magnetic variations of aeolian sands in the Tarim Basin and its paleoclimatic implications[J]. Physics of the Earth and Planetary Interiors, 2014, 229: 82-87. |
16 | ZAN J, FANG X, YAN M, et al. Magnetic variations in surface soils in the NE Tibetan Plateau indicating the climatic boundary between the westerly and East Asian summer monsoon regimes in NW China[J]. Global and Planetary Change, 2015, 130: 1-6. |
17 | ZAN J, FANG X, KANG J, et al. Spatial and altitudinal variations in the magnetic properties of eolian deposits in the northern Tibetan Plateau and its adjacent regions: implications for delineating the climatic boundary[J]. Earth-Science Reviews, 2020, 208: 103271. |
18 | KANG J, ZAN J, BAI Y, et al. Critical altitudinal shift from detrital to pedogenic origin of the magnetic properties of surface soils in the western Pamir Plateau, Tajikistan[J]. Geochemistry, Geophysics, Geosystems, 2020, 21: e2019GC008752. |
19 | NING W, ZAN J, YANG S, et al. A combined rock magnetic and meteorological investigation of the precipitation boundary across the Tibetan Plateau[J]. Geophysical Research Letters, 2021, 48: e2021GL094808. |
20 | JIA J, XIA D, WANG B, et al. The investigation of magnetic susceptibility variation mechanism of Tien Mountains modern loess: pedogenic or wind intensity model?[J]. Quaternary International, 2013, 296: 141-148. |
21 | ZENG M, SONG Y, LI Y, et al. The relationship between environmental factors and magnetic susceptibility in the Ili Loess, Tianshan Mountains, Central Asia[J]. Geological Journal, 2018, 54(4): 1-13. |
22 | Chinese Academy of Sciences Qinghai-Xizang Plateau Comprehensive Scientific Expedition Team. The series of the scientific expedition to the Qinghai-Xizang Plateau: soils of Xizang (Tibet) [M]. Beijing: Science Press, 1985. |
22 | 中国科学院青藏高原综合科学考察队. 西藏土壤[M]. 北京: 科学出版社, 1985. |
23 | Chinese Academy of Sciences Qinghai-Xizang Plateau Comprehensive Scientific Expedition Team. The series of the scientific expedition to the Qinghai-Xizang Plateau: vegetations of Xizang (Tibet) [M]. Beijing: Science Press, 1988. |
23 | 中国科学院青藏高原综合科学考察队. 西藏植被[M]. 北京: 科学出版社, 1988. |
24 | THOMPSON R, OLDFIELD F. Environmental magnetism[M]. Winchester MA: Allen and Unwin, 1986. |
25 | EVANS M, HELLER F. Environmental magnetism: principles and applications of enviromagnetics[M]. Amsterdam: Academic Press, 2003. |
26 | DENG C, VIDIC N, VEROSUB K, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long‐term climatic variability[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B03103. |
27 | ZAN J, FANG X, LI X, et al. Long-term variations in the lithogenic susceptibility of Chinese eolian deposits since the late Pliocene[J]. Geophysical Research Letters, 2019, 46: 726-735. |
28 | ZHOU L, OLDFIELD F, WINTLE A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6 286): 737-739. |
29 | LIU Q, DENG C, TORRENT J, et al. Review of recent development in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3/4): 368-385. |
30 | BLUNDELL A, DEARING J, BOYLE J, et al. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales[J]. Earth-Science Reviews, 2009, 95(3/4):158-188. |
31 | WANG Junbang, WANG Juwu, YE Hui, et al. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000-2012) [DB/OL]. China Scientific Data, 2020. [2021-10-12]. DOI: 10.11922/sciencedb.319. |
31 | 王军邦,王居午,叶辉,等. 2000—2012年全国气温和降水1 km网格空间插值数据集[DB/OL]. 国家生态科学数据中心, 2020. [2021-10-12]. DOI: 10.11922/sciencedb.319. |
32 | LI Yanying, ZHANG Qiang, XU Xia, et al. Relationship between precipitation and terrain over the Qilian Mountains and their ambient areas[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 52-61. |
32 | 李岩瑛, 张强, 许霞, 等. 祁连山及周边地区降水与地形的关系[J]. 冰川冻土, 2010, 32(1): 52-61. |
33 | WANG Jinye, CHANG Xuexiang, GE Shuanglan, et al. Vertical distribution of the vegetation and water and heat conditions of Qilian Mountain (northern slope)[J]. Journal of Northwest Forestry University, 2001, 16(): 1-3. |
33 | 王金叶, 常学向, 葛双兰, 等. 祁连山(北坡)水热状况与植被垂直分布[J]. 西北林学院学报, 2001, 16(): 1-3. |
34 | BLOEMENDAL J, LIU X. Rock magnetism and geochemistry of two Plio-Pleistocene Chinese loess-palaeosol sequences-Implications for quantitative palaeoprecipitation reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(1/2): 149-166. |
35 | SONG Y, SHI Z, FANG X, et al. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau[J]. Science China: Earth Sciences, 2010, 53: 419-431. |
36 | JIA J, XIA D, WANG Y, et al. East Asian monsoon evolution during the Eemian, as recorded in the western Chinese Loess Plateau[J]. Quaternary International, 2016, 399: 156-164. |
37 | JIA J, LU H, WANG Y, et al. Variations in the iron mineralogy of a loess section in Tajikistan during the mid-Pleistocene and late Pleistocene: implications for the climatic evolution in Central Asia[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1 244-1 258. |
38 | ZAN J, FANG X, YANG S, et al. A rock magnetic study of loess from the west Kunlun Mountains[J]. Journal of Geophysical Research: Solid Earth, 2010, 115: B10101. |
39 | ZAN J, FANG X, NIE J, et al. Rock magnetism in loess from the middle Tian Shan: implications for paleoenvironmental interpretations of magnetic properties of loess deposits in Central Asia[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: Q10Z50. |
/
〈 |
|
〉 |