矿产赋存进展

新元古代微生物成锰作用——来自扬子北缘城口地区陡山沱组锰质叠层石的证据

  • 张懿 ,
  • 陈龙 ,
  • 李建 ,
  • 黄治清 ,
  • 王东歌 ,
  • 韦轶 ,
  • 史强 ,
  • 吴庆铭 ,
  • 旷红伟 ,
  • 柳永清
展开
  • 1.重庆市地质矿产勘查开发局205地质队,重庆 402160
    2.中国地质科学院地质研究所,北京 100037
张懿(1993-),男,重庆江津人,工程师,主要从事沉积学相关研究. E-mail: zhangyi20150621@163.com
旷红伟(1969-),女,湖南湘乡人,研究员,主要从事沉积学、地层学和石油地质学研究. E-mail: kuanghw@126.com

收稿日期: 2020-11-17

  修回日期: 2021-02-28

  网络出版日期: 2021-11-19

基金资助

北京市科技计划课题——国际创新资源合作项目“前寒武纪末次冰期与地球、环境和生命演化”(Z201100008320007);中国地质调查局发展研究中心“整装勘查区找矿预测与技术应用示范”二级子项目“重庆市城口县锰矿整装勘查区矿产调查与找矿预测”(121201004000150017-91)

Biomineralization of Manganese in Neoproterozoic Evidence from Manganese Stromatolites of the Sinian Doushantuo Formation in Chengkou Area Northern Margin of Yangtze Block

  • Yi ZHANG ,
  • Long CHEN ,
  • Jian LI ,
  • Zhiqing HUANG ,
  • Dongge WANG ,
  • Yi WEI ,
  • Qiang SHI ,
  • Qingming WU ,
  • Hongwei KUANG ,
  • Yongqing LIU
Expand
  • 1.No. 205 Geological Team,Chongqing Bureau of Geology and Minerals Exploration,Chongqing 402160,China
    2.Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China
ZHANG Yi (1993-), male, Jiangjin City, Chongqing Municipality, Engineer. Research areas include sedimentology. E-mail: zhangyi20150621@163.com
KUANG Hongwei (1969-), female, Xiangxiang City, Hunan Province, Professor. Research areas include sedimentology, stratigraphy, and petroleum geology. E-mail: kuanghw@126.com

Received date: 2020-11-17

  Revised date: 2021-02-28

  Online published: 2021-11-19

Supported by

the International Innovation Resources Cooperation Project "The Precambrian last glaciation and the evolution of paleoenvironment and life on Earth" from Science and Technology committee of Beijing(Z201100008320007);The Second-level Sub-project of "prospecting prediction and technology application demonstration in integrated exploration area" of the China Geological Survey, the mineral investigation and prospecting prediction of integrated manganese exploration area in Chengkou, Chongqing(121201004000150017-91)

摘要

叠层石菱锰矿被认为是生物成锰的证据,但少见相关报道。扬子北缘城口地区陡山沱组菱锰矿层中叠层石十分发育,但研究程度较低,其生长机制不明确,其是否是叠层石或者是附枝藻(Epiphyton)仍具有争议。从岩心描述与薄片观察出发,详细描述了研究区锰质叠层石的宏观和微观特征,根据其发育规模及形态特征将其划分为6种类型:微型分叉柱状叠层石、微型指状叠层石、指状叠层石、层状叠层石、柱状叠层石及层—柱状叠层石。研究表明,研究区柱状锰质叠层石直径一般小于1 cm,具同步生长特征,与假裸枝叠层石(Pseudogymnosolenaceae)特征相似。研究区微小型、宏体型叠层石基本层常呈有立柱结构的板状,这种基本层由树形石及微型叠层石组成,而不是附枝藻。叠层石与核形石、鲕粒共生,形成于碳酸盐岩台地边缘礁滩及滩后泻湖环境。研究区锰质叠层石垂向演化从指状向层状演化为主,指示陡山沱组沉积末期水体逐渐变浅。锰质叠层石微观结构以凝块结构为主,具有丝状、球状和放射状等微生物岩显微结构。锰质叠层石记录了碳酸锰精美的原始沉积结构,暗示微生物参与了锰元素的沉积成矿作用。

本文引用格式

张懿 , 陈龙 , 李建 , 黄治清 , 王东歌 , 韦轶 , 史强 , 吴庆铭 , 旷红伟 , 柳永清 . 新元古代微生物成锰作用——来自扬子北缘城口地区陡山沱组锰质叠层石的证据[J]. 地球科学进展, 2021 , 36(10) : 1052 -1076 . DOI: 10.11867/j.issn.1001-8166.2021.015

Abstract

Stromatolite rhodochrosite is typical one of microbialites, which isconsideredas the evidence of biomineralization of manganese, but it is rarely reported around the world. Fortunately, manganese stromatolites develop well in the manganese deposit of the Sinian Doushantuo Formation in Chengkou area, northern margin of Yangtze block. These microbialites have been studied in a relatively low degree in this study area, and the growth mode and whether they belong to stromatolites or Epiphytonare still controversial. Based on core observation and microscopic thin section observation, the macros and microscopic characteristics of manganese stromatolites were described in detail. According to the scale and morphology, the manganese stromatolites can be divided into six types, including microbranched, microdigitate, minidigitate, stratiform, columnar, and stratiform - columnar stromatolites. The results showed that the diameter of the columnar manganese stromatolites are generally less than 1 cm with the characteristics of synchronic growth, which have the same features with Pseudogymnosolenaceae. The banded laminae (not Epiphyton) composed of dendrites and micro stromatolites is a common feature of mini and macro stromatolites. The stromatolites grew in the reef shoal and lagoon behind the shoal at the edge of a carbonate platform, coexisting with oolites and oncolites. The vertical evolution of stromatolites in this study area is dominant from minidigitate to stratiform, indicating that the water body gradually became shallower in the late Doushantuo period. The microbialite microstructures of manganese stromatolites aremainly clotted,in addition, they have tubular, spherical, fibrous forms which are related to microorganisms. Manganese stromatolites recorded the exquisite original sedimentary structures, suggesting that microorganisms are involved in the mineralization of manganese.

参考文献

1 XIANG Jie, CHEN Jianping, BAGAS L, et al. Southern China's manganese resource assessment: an overview of resource status, mineral system, and prediction model[J]. Ore Geology Reviews, 2020, 116: 103260. DOI:10.1016/j.oregeorev.2019.103261.
2 HOU Zonglin, XUE Youzhi, HUANG Jinshui, et al. Manganese ore deposits around Yangtze Platform[M]. Beijing: Metallurgical Industry Press, 1997.
2 侯宗林, 薛友智, 黄金水, 等. 扬子地台周边锰矿[M]. 北京:冶金工业出版社, 1997.
3 FAN Delian, YANG Peiji. Introduction to and classification of manganese deposits of China[J]. Ore Geology Reviews, 1999, 15(1/3): 1-13.
4 CHEN Fangge, WANG Qingfei, YANG Shujuan, et al. Space-time distribution of manganese ore deposits along the southern margin of the South China Block, in the context of Palaeo-Tethyan evolution[J]. International Geology Review, 2017, 60(1): 72-86.
5 ZHOU Qi, DU Yuansheng, YUAN Liangjun, et al. The structure of the Wuling Rift Basin and its control on the manganese deposit during the Nanhua period in Guizhou-Hunan-Chongqing Border area,South China[J]. Earth Science, 2016, 41(2): 177-188.
5 周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177-188.
6 WANG Ziyong, HAN Runsheng, REN Tao, et al. Genesis of Qujiashan manganese deposit, Shaanxi Province: constraints from geological, geochemical, and carbon and oxygen isotopic evidences[J]. Journal of Central South University, 2019, 26(12):3 516-3 533.
7 ROY S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system[J]. Earth Science Reviews, 2006, 77(4):273-305.
8 DILL H G. The "chessboard" classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium[J]. Earth Science Reviews, 2010, 100: 1-420.
9 KULESHOV V N. Isotope geochemistry the origin and formation of manganese rocks and ores[M]. Elsevier, 2017.
10 SOKOLOVA-DUBININA G A, DERIUGINA Z P. A study of the process of iron-manganese concretions formation in the Punnus-Iarvi Lake[J]. Mikrobiologiia, 1967, 36(6): 1 066-1 076.
11 SOKOLOVA-DUBININA G A, DERIUGINA Z P. On the role of microorganisms in the formation of rodokhrozite in Punnus-Jahrvi Lake[J]. Mikrobiologiia, 1967, 36(3): 435-442.
12 COLEMAN M, FLEET A, DOBSON P. Preliminary studies of manganese-rich carbonate nodules from leg 68, suite 503, eastern Equatorial Pacific[R]. Initial Reports DSDP, U.S. Govt. Printing office, 1982, 68: 481-489.
13 KULESHOV V N, SHTERENBERG L Y. Isotopic composition of ferromanganese concretions from lake krasnoye[J]. International Geology Review, 1988, 30(10): 1 092-1 103.
14 CHEN Jianlin, ZHANG Fusheng, LIN Chengyi, et al. Biogenesis study of manganese nodules from the Chinese pioneer area in the Pacific Ocean[J]. Acta Geologica Sinica, 2001, 75(2): 228-233.
14 陈建林, 张富生, 林承毅, 等. 太平洋中国开辟区锰结核生物成因研究[J]. 地质学报, 2001, 75(2): 228-233.
15 ASTAKHOV A S, TIEDEMANN R, MURDMAA I O, et al. Manganese carbonates in the upper quaternary sediments of the Deryugin basin (Sea of Okhotsk)[J]. Oceanology, 2006, 46(5): 716-729.
16 Dick G J, Clement B G, Webb S M, et al. Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas basin deep-sea hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2009, 73(21): 6 517-6 530.
17 PIRJO Yli-Hemminki, KIRSTEN S, JRGENSEN Jouni, et al. Iron-Manganese Concretions Sustaining Microbial Life in the Baltic Sea: the structure of the bacterial community and enrichments in metal-oxidizing conditions[J]. Geomicrobiology Journal, 2014, 31(4): 263-275.
18 SULU-GAMBARI F, SEITAJ D, BEHRENDS T, et al. Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin[J]. Geochimica et Cosmochimica Acta, 2016, 192: 49-69.
19 MORGAN J J. Kinetics of reaction between O2 and Mn(Ⅱ) species in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35-48.
20 BANDSTRA J Z, ROSS D E, BRANTLEY S L, et al. Compendium and synthesis of bacterial manganese reduction rates[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 337-351.
21 YU Hang, LEADBETTER J R. Bacterial chemolithoautotrophy via manganese oxidation[J]. Nature, 2020, 583(7 816): 453-458.
22 OKITA P M, MAYNARD J B, SPIKER E C, et al. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore[J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2 679-2 685.
23 OKITA P M, III W C S. Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China[J]. Chemical Geology, 1992, 99(1/3): 139-163.
24 KULESHOV V N, BELYAEV A A. Origin of the carbonate manganiferous concretions in the Paleozoic Rocks of Pai-Khoi (based on the carbon and oxygen isotopic compositions)[J]. Lithology & Mineral Resources, 1999, 3: 241-250.
25 FAN Delian, YE Jie, YIN Leiming, et al. Microbial processes in the formation of the Sinian Gaoyan manganese carbonate ore, Sichuan Province, China[J]. Ore Geology Reviews, 1999,15(1/3): 79-93.
26 KULESHOV V N, GAVRILOV Y O. Isotopic composition (δ13C, δ18O) of carbonate concretions from terrigenous deposits in the Northern Caucasus[J]. Lithology & Mineral Resources, 2001, 36(2): 160-163.
27 KULESHOV V N. Isotopic composition (δ13C, δ18O) and origin of manganese carbonate ores from the Early Oligocene Deposits, the Eastern Paratethys[J]. Chemie der Erde-Geochemistry, 2003, 63(4): 329-363.
28 KULESHOV V N. A superlarge deposit-Kalahari manganese ore field (Northern Cape, South Africa): geochemistry of isotopes (δ13C and δ18O) and genesis[J]. Lithology & Mineral Resources, 2012, 47(3): 217-233.
29 KULESHOV V N, BRUSNITSYN A I. Isotopic composition (δ13C, δ18O) and the origin of carbonates from manganese deposits of the Southern Urals[J]. Lithology & Mineral Resources, 2005, 40(4): 364-375.
30 TANG Shiyu, LIU Tiebing. Origin of the early Sinian Minle manganese deposit, Hunan Province, China[J]. Ore Geology Reviews, 1999, 15(1):71-78.
31 NYAME F K, BEUKES N J, KASE K, et al. Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis?[J]. Sedimentary Geology, 2002, 154(3/4): 159-175.
32 MUKHOPADHYAY J, GUTZMER J, BEUKES N J. Organotemplate structures in sedimentary manganese carbonates of the Neoproterozoic Penganga Group, Adilabad, India[J]. Journal of Earth System Science, 2005, 114(3): 247-257.
33 YU Wenchao, POLGáRI M, GYOLLAI I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122-135.
34 POLGáRI M, HEIN J R, TóTH A L, et al. Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years (úrkút, Hungary)[J]. Geology, 2012, 40(10): 903-906.
35 POLGáRI M, HEIN J R, VIGH T, et al. Microbial processes and the origin of the úrkút manganese deposit, Hungary[J]. Ore Geology Reviews, 2012, 47: 87-109.
36 POLGáRI M, HEIN J R, BíRó L, et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (úrkút, Hungary)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 99-120.
37 DU Qiuding, YI Haisheng. New microbiological origin evidence of manganese deposit in the Falang Formation of Middle Triassic, southeast Yunnan[J]. Geological Science and Technology Information, 2009, 28(5):78-85.
37 杜秋定, 伊海生. 滇东南中三叠统法郎组锰矿床微生物成因的新证据[J]. 地质科技情报, 2009, 28(5):78-85.
38 ZHENG Yuchun. A preliminary study on biomineralogical characteristics of manganese ore from mingle,west Hunan[J]. Acta Mineralogica Sinica,1986(1):36-43,97.
38 郑钰纯.民乐锰矿生物矿物学特征初步研究[J].矿物学报,1986(1):36-43,97.
39 XU Zhaoliang. Algal fossils from late Precambrian Banded Manganese Formation (BMF), Xiangtan, Hunan Province of China[J]. Journal of Integrative Plant Biology,1987,29(1):104-110,129.
39 徐兆良. 湘潭晚前寒武纪条带状含锰建造中的化石藻类[J]. 植物学报, 1987,29(1):104-110,129.
40 ZHENG Guangxia, LIU Xunfeng. The algae mineralization of the sedimentary dialogite deposits of Sinian and its diagenetic succession, Guizhou Province[J]. Guizhou Geology, 1987, 4(3):41-52.
40 郑光夏, 刘巽锋. 贵州震旦纪沉积菱锰矿床的藻类成矿作用及其成岩序列[J]. 贵州地质, 1987,4(3):41-52.
41 YIN Leiming. Microfossils from late Proterozoic manganese ore deposits in western Hunan Province and eastern Guizhou Province, south China[J]. Science in China (Series B), 1990, 33(6): 88-96.
42 JO?O Carlos Biondi, LOPEZ M. Urucum Neoproterozoic-Cambrian manganese deposits (MS, Brazil): biogenic participation in the ore genesis, geology, geochemistry, and depositional environment[J]. Ore Geology Reviews, 2017, 91: 335-386.
43 BIONDI J C, Polgári MáRTA, Gyollai ILDIKó, et al. Biogenesis of the Neoproterozoic kremydilite manganese ores from Urucum (Brazil)—a new manganese ore type[J]. Precambrian Research, 2020, 340:105624.
44 ZHAO Dongxu. Types and biogenic mineralization of manganese rock in Gaoyan rhodochrosite ore, north Sichuan Province[J]. Acta Petrologica Sinica, 1994, 10(2): 171-183.
44 赵东旭. 川北高燕锰矿的锰质岩类型和生物成矿作用[J]. 岩石学报, 1994, 10(2):171-183.
45 FU Xiugen, ZHU Lidong, XIONG Yongzhu, et al. Characteristics and significance of biomarkers in Gaoyan manganese deposit of Chengkou area, Chongqing[J]. Acta Sedimentologica Sinica, 2004, 22(4):614-620.
45 付修根, 朱利东, 熊永柱, 等. 重庆城口高燕锰矿的生物标志物特征及意义[J]. 沉积学报, 2004, 22(4):614-620.
46 ZHAO Dongxu. Epiphyton manganese stromatolites from Doushantuo Formation in Chengkou, Sichuan[J]. Chinese Science Bulletin, 1992, 37(20): 1 873-1 875.
46 赵东旭. 四川城口陡山沱组的Epiphyton锰质叠层石[J]. 科学通报, 1992, 37(20):1 873-1 875.
47 WANG Yao, DAI Yongding, CHEN Menge. Re-examination of geological features of manganes carbonate deposits and their genesis in Chengkou County, Chongqing[J]. Chinese Journal of Geology, 1999, 34(4): 451-462.
47 王尧, 戴永定, 陈孟莪. 重庆城口锰矿床的地质特征及其成因的再认识[J]. 地质科学, 1999, 34(4): 451-462.
48 CAO Ruiji, YU Congliu. Late Sinian microstromatolites first discovered from Shimen, Hunan[J]. Acta Micropalaeontologica Sinica, 1991, 8(4): 365-371.
48 曹瑞骥, 俞从流. 湖南石门晚震旦世微叠层石的发现[J]. 微体古生物学报, 1991, 8(4):365-371.
49 CAO Ruiji, YUAN Xunlai. Stromatolites[M]. Hefei: University of Science and Technology of China Press, 2006.
49 曹瑞骥, 袁训来. 叠层石[M]. 合肥: 中国科学技术大学出版社, 2006.
50 WANG Ruirui, ZHANG Yueqiao, XIE Guoai, et al. Origin of the Dabashan foreland salient: insights from sandbox modeling[J]. Acta Geologica Sinica, 2011, 85(9): 1 409-1 419.
50 王瑞瑞, 张岳桥, 解国爱, 等. 大巴山前陆弧形构造的成因:来自砂箱实验的认识[J]. 地质学报, 2011, 85(9): 1 409-1 419.
51 LI Jianhua, ZHANG Yueqiao, DONG Shuwen, et al. Structural and geochronological constraints on the Mesozoic tectonic evolution of the North Dabashan zone, South Qinling, central China[J]. Journal of Asian Earth Sciences, 2013, 64: 99-114.
52 DONG Yunpeng, ZHANG Xiaoning, LIU Xiaoming, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 2015, 104:84-98.
53 DONG Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, central China[J]. Gondwana Research, 2016, 29: 1-40.
54 LI Sanzhong, JAHN B M, ZHAO Shujuan, et al. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 2017, 166:270-285.
55 LI Jinxi, LI Zhiwu, LIU Shugen, et al. Kinematics of the Chengkou fault in the south Qinling orogen, Central China[J]. Journal of Structural Geology, 2018, 114(SEP.): 64-75.
56 CUI Kai, WANG Yixuan. Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China[J]. Journal of Asian Earth Sciences, 2019, 176:244-252.
57 LING Wenli, REN Bangfang, DUAN Ruchun, et al. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Science Bulletin, 2008, 53(14):2 192-2 199.
58 ZHAO Junhong, LI Qiwei, LIU Hang, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth-Science Reviews, 2018, 187:1-18.
59 HE Dengfa, LI Desheng, ZHANG Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3):589-606.
59 何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3):589-606.
60 CHEN Long, ZHANG Yi, LI Jian, et al. Geological characteristics and ore controlling factors of Hongzi mining area in Chengkou manganese deposit, Chongqing[J]. Geology and Exploration, 2020, 56(5): 915-927.
60 陈龙, 张懿, 李建, 等. 重庆城口锰矿红籽矿区地质特征及控矿因素分析[J]. 地质与勘探, 2020, 56(5): 915-927.
61 WALTER M R. Stromatolites, developments in sedimentology[M]. Amsterdam: Elsevier, 1976.
62 SEMIKHATOV M A. Experience in stromatolite studies in the USSR[M]//Stromatolites: developments in sedimentology, 20. Amsterdam: Elsevier, 1976: 337-358.
63 BURNE R V, MOORE L S. Microbialites: organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254.
64 RIDING R. Calcareous algae and stromatolites[M]. Berlin Heidelberg: Springer, 1991: 21-51.
65 MEI Mingxiang. Revised classification of microbial carbonates: complementing the classification of limestones[J]. Earth Science Frontiers, 2007(5):224-236.
65 梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007(5):224-236.
66 WU Yasheng, JIANG Hongxia, YU Gongliang, et al. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J]. Journal of Palaeogeography, 2018, 20(5):737-775.
66 吴亚生, 姜红霞, 虞功亮, 等. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因[J]. 古地理学报, 2018, 20(5):737-775.
67 GREY K, AWRAMIK S M. Handbook for the study and description of microbialites: geological Survey of Western Australia, Bulletin 147[M/OL]. www.dmirs.wa.gov.au/GSWApublications, 2020.
68 GOLUBIC S. The relatiomship between blue-green algae and carbonate deposits[M]// The biology of blue-green algae. Blackwell Scientific Publications, 1973: 434-472.
69 NUTMAN A P, BENNETT V C L, FRIEND C R L, et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[J]. Nature, 2016, 537(7 621):535-538.
70 HOFMANN H J. Archean stromatolites as microbial archives[M]// Microbial sediment. Heidelberg: Speringer-Verlag, 2000: 315-327.
71 FANG Qifei, ZHANG Huquan. A review of earth system change impacts on the stromatolite decline[J]. Advances in Earth Science, 2014, 29(9):1 003-1 010.
71 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J].地球科学进展, 2014, 29(9): 1 003-1 010.
72 KUANG Hongwei, LIU Yongqing, GENG Yuansheng, et al. Important sedimentary geological events of the Meso-Neoproterozoic and their significance[J]. Journal of Palaeogeography, 2019, 21(1): 1-30.
72 旷红伟, 柳永清, 耿元生, 等. 中国中新元古代重要沉积地质事件及其意义[J]. 古地理学报, 2019, 21(1): 1-30.
73 LIANG Yuzuo, CAO Ruiji, ZHANG Luyi. Late Precambrian Pseudogymnosolenaceae[M]. Beijing: Geological Publishing House, 1984.
73 梁玉左, 曹瑞骥, 张录易. 晚前寒武纪假裸枝叠层石[M]. 北京:地质出版社, 1984.
74 HOFMANN H J. On Aphebian stromatolites and Riphean stromatolite stratigraphy[J]. Precambrian Research, 1977, 5(2): 175-205.
75 GREY K, THORNE A M. Biostratigraphic significance of stromatolites in upward shallowing sequences of the Early Proterozoic Duck Creek Dolomite, Western Australia[J]. Precambrian Research, 1985, 29(1/3): 183-206.
76 SEMIKHATOV M A. Nekotorye karbonatnye stromatolity afebiya kanadskogo shchita, some aphebian carbonate stromatolites of the Canadian shield[M]// Nizhnyaya granitsa rifeyai stromatolity afebiya, lower boundary of the riphean and stromatolites of the Aphebian. Trudy Geologicheskogo Instituta, Akademiya Nauk SSSR, 1978, 312:111-147.
77 GROTZINGER J P. Geochemical model for Proterozoic stromatolite decline[J]. American Journal Ofence, 1990, 290: 80-103.
78 QIU Shuyu, LIANG Yuzuo. A restudy of Pseudogymnosolenaceae[J]. Acta Palaeontologica Sincia, 1993, 32(1): 123-128.
78 邱树玉,梁玉左.再论假裸枝叠层石科[J].古生物学报, 1993, 32(1): 123-128.
79 CAO Ruiji, YUAN Xunlai. Research progress of stromatolites in China[J]. Acta Palaeontologica Sinica, 2009, 48(3): 27-34.
79 曹瑞骥, 袁训来. 中国叠层石研究进展[J]. 古生物学报, 2009, 48(3): 27-34.
80 HOFMANN H J, JACKSON G D. Proterozoic ministromatolites with radial-fibrous fabric[J]. Sedimentology, 1987, 34(6): 963-971.
81 GROTZINGER J P, READ J F. Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) dolomite, Wopmay orogeny, northwest Canada[J]. Geology, 1983, 11(12): 710-713.
82 SUMNER D Y, GROTZINGER J P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?[J]. Geology, 1996, 24(2): 119-122.
83 GROTZINGER J P, ROTHMAN D H. An abiotic model for stromatolite morphogenesis[J]. Nature, 1996, 383(6 599): 423-425.
84 GROTZINGER J P, KNOLL A H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 313-358.
85 GROTZINGER J P, JAMES N P. Precambrian carbonates: evolution of understanding[M]//Carbonate sedimentation and diagenesis in the evolving precambrian world. Tulsa: SEPM Special Publication, 2000, 67: 3-20.
86 BARTLEY J K, KAH L C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle[J]. Geology, 2004, 32(2) :129-132.
87 RIDING R. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites[J]. Geologia Croatica, 2008, 61(2/3): 73-103.
88 MEI Mingxiang, GAO Jinhan, MENG Qingfen, et al. Microdigital stromatolites and their response to stromatolite decline at 1 250 Ma± for the Mesoproterozoic Wumishan Formation at Jixian section in Tianjin[J]. Journal of Palaeogeography, 2008, 10(5): 495-509.
88 梅冥相, 高金汉, 孟庆芬 ,等. 天津蓟县中元古界雾迷山组微指状叠层石及其对1 250 Ma±叠层石衰减事件的响应[J].古地理学报, 2008, 10(5): 495-509.
89 TANG Dongjie, SHI Xiaoying, JIANG Ganqing, et al. Mesoproterozoic microdigitate stromatolites:Ultra-fabrics and organomineralization[J]. Geological Review, 2012, 58(6): 1 001-1 016.
89 汤冬杰, 史晓颖, 蒋干清, 等. 中元古代微指状叠层石:超微组构和有机矿化过程[J]. 地质论评, 2012, 58(6): 1 001-1 016.
90 TANG Dongjie, SHI Xiaoying, JIANG Ganqing, et al. Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales[J]. Palaios, 2013, 28(3): 178-194.
91 MIN Xiao, HUA Hong, LIU Lijing, et al. Phosphatized Epiphyton from the terminal Neoproterozoic and its significance[J]. Precambrian Research, 2019, 331: 105358.
92 RIDING R. Calcified Algae and Bacteria. The ecology of the cambrian radiation[M]. New York: Columbia University Press, 2001: 445-473.
93 WOO J, CHOUGH S K, HAN Zuozhen. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China[J]. Palaios, 2008, 23(1): 55-64.
94 GANDIN A, DEBRENNE F. Distribution of the archaeocyath-calcimicrobial bioconstructions on the Early Cambrian shelves[J]. Palaeoworld, 2010, 19(3/4): 222-241.
95 PRATT B R. Epiphyton and Renalcis-diagenetic microfossils from calcification of coccoid blue-green algae[J]. Journal of Sedimentary Research, 1984, 54(3): 948-971.
96 WALTER M R. Stromatolites: the main geoglogical source of information on the evolution of the Early Benthos[M]//Early life on Earth, Nobel symposium, 84. New York: Columbia University Press, 1994: 270-286.
97 AWRAMIK S M. The history and significance of stromatolites[M]//Early organic evolution: implications for mineral and energy resources. Heidelberg: Springer, 1992: 435-449.
98 KUANG Hongwei, FAN Zhengxiu, LIU Yongqing, et al. Stromatolite characteristics of Mesoproterozoic Shennongjia Group in the northern margin of Yangtze Block, China[J]. China Geology, 2019, 2(3): 364-381.
99 KENNARD J M.Thrombolites and stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Basin Amadeus, Central Australia[M]//Phanerozoic stromatolites II. Kluwer: Dordrecht, 1994: 443-503.
100 GROTZINGER J P. Facies and evolution of precambrian carbonate depositional systems: emergence of the modern platform archetype[M]// Controls on carbonate platforms and basin development. Tulsa: SEPM Special Publication, 1989, 44: 79-106.
101 WALTER M R, GROTZINGER J P, SCHOPF J W. Proterozoic stromatolites[M]//The proterozoic biosphere, a mulitidisciplinary study. Cambridge: Cambridge University Press, 1992, 253-260.
102 ZHENG Famo. The characteristics of the petrology and sedimentary environments of the Sinian in the Chengkou area, northern Sichuan Province[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 1990, 17(4):81-89.
102 郑发模. 城口震旦系岩石学特征及沉积环境分析[J]. 成都地质学院学报:自然科学版, 1990, 17(4):81-89.
103 FAN Delian, ZHANG Zhu, YE Jie. Black rock series and related deposits in China[M]. Beijing: Science Press, 2004.
103 范德廉, 张煮, 叶杰. 中国的黑色岩系及其有关矿床[M]. 北京:科学出版社, 2004.
104 FAN Delian, LIU Tiebing, YE Jie. The process of formation of manganese carbonate deposits hosted in black shale series[J]. Economic Geology, 1992, 87(5):1 419-1 429.
105 LI Huimin, LI Zhiming. Research on metallogenic geology characteristics and exploration indications of manganese, north edge of Yangzi platform[J]. Geology and Prospecting, 2005, 41(1):18-21.
105 李会民, 李智明. 扬子地台北缘锰矿成矿地质特征及找矿方向研究[J]. 地质与勘探, 2005, 41(1):18-21.
106 CHEN Jia, ZHU Mingzhong, DONG Shuyi, et al. REE characteristics of Mn-bearing carbonate rocks in Gaoyan manganese deposit, Chongqing[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(3): 367-374.
106 陈佳, 朱明忠, 董树义, 等. 重庆高燕锰矿床含锰碳酸盐岩稀土元素特征[J]. 地质找矿论丛, 2017, 32(3): 367-374.
107 JIA Wei, CHEN Cuihua, ZHANG Zixian, et al. Ore-forming material source and sedimentary environment of Gaoyan Manganese Deposit in Chongqing[J]. Science Technology and Engineering, 2020, 20(5): 1 724-1 733.
107 贾伟, 陈翠华, 张自贤, 等. 重庆高燕锰矿床成矿物质来源及沉积环境[J]. 科学技术与工程, 2020, 20(5): 1 724-1 733.
108 LI Yingqiang, HE Dengfa, WEN Zhu. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 2013, 15(2): 231-245.
108 李英强, 何登发, 文竹. 四川盆地及邻区晚震旦世古地理与构造—沉积环境演化[J]. 古地理学报, 2013, 15(2): 231-245.
109 WANG Zecheng, LIU jingjiang, JIANG Hua, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1):41-53.
110 LI Zhiwu, RAN Bo, XIAO Bin, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin,central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85.
110 李智武, 冉波, 肖斌, 等. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85.
111 WANG Han, LI Zhiwu, LIU Shugen, et al. Ediacaran extension along the northern margin of the Yangtze Platform, South China: constraints from the lithofacies and geochemistry of the Doushantuo Formation[J]. Marine and Petroleum Geology, 2020, 112: 104 056-104 073.
112 BODOR S, POLGáRI M, SZENTPéTERY I, et al. Microbially mediated iron ore formation, Silicic Superunit, Rudabánya, Hungary[J]. Ore Geology Reviews, 2016, 72(P1): 391-401.
113 BARGAR J R, TEBO B M, BERGMANN U, et al. Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1[J]. American Mineralogist, 2005, 90: 143-154.
114 WEBB S, DICK G J, BARGAR J R, et al. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15): 5 558-5 563.
115 BANDSTRA J Z, ROSS D E, BRANTLEY S L, et al. Compendium and synthesis of bacterial manganese reduction rates[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 337-351.
116 TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides: properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 287-328.
117 WANG Xiao, LI Yan, LI Yanzhang, et al. Effects of Mg2+ and SO42- on Mn-carbonate mineralization induced by microorganisms in shallow seas[J]. Earth Science, 2018, 43(): 145-156.
117 王霄, 李艳, 黎晏彰, 等. 浅海Mg2+和SO42-对微生物诱导形成锰碳酸盐的影响[J]. 地球科学, 2018, 43(): 145-156.
118 LI Yan, WANG Xiao, LI Yanzhang, et al. Coupled anaerobic and aerobic microbial processes for Mn-carbonate precipitation: a realistic model of inorganic carbon pool formation[J]. Geochimica et Cosmochimica Acta, 2019, 256: 49-65.
119 MAYNARD J B. Manganiferous sediments, rocks, and ores[M]// Treatise on geochemistry(second edition). Elsevier, 2014, 9: 327-349.
120 JOHNSON J E, WEBB S M, MA Chi, et al. Manganese mineralogy and diagenesis in the sedimentary rock record[J]. Geochimica et Cosmochimica Acta, 2016, 173: 210-231.
121 KULESHOV V N, ZHEGALLO E A, SHKOL'NIK E L. Evolution of manganese ore genesis in the Earth's geological history and the role of the biosphere[J]. Doklady Earth Sciences, 2011, 441(2): 1 611-1 615.
122 LITHERLAND M, MALAN S P. Manganiferous stromatolites from the Precambrian of Botswana[J]. Journal of the Geological Society, 1973, 129(5): 543-544.
123 DOYEN L. The manganese ore deposit of Kisenge-Kamata (Western Katanga). Mineralogical and sedimentological aspects of the primary ore [M]// Ores in sediments. Heidelberg: International Sedimentological Congress, 1973: 93-100.
124 MONTY C L V. Les nodules de manganese sont des stromatolltes oceaniqnes[J]. Comptes Rendus de l'Académie des Sciences de Paris, 1973, 276 :3 285-3 288.
125 BIAN Lizeng, LIN Chengyi, ZHANG Fusheng, et al. Pelagic manganese nodules—a new type of oncolites[J]. Acta Geologica Sinica, 2010, 71(1):43-48.
125 边立曾, 林承毅, 张富生, 等. 深海锰结核——核形石的新类型[J]. 地质学报, 1996, 70(3): 232-236.
126 CHEN Jianlin, ZHANG Fusheng, BIAN Lizeng. Supermicroorganisms are the builders of ocean polymetallic nodule mineralization[J]. Chinese Science Bulletin, 1997, 42(4): 337-343.
126 陈建林, 张富生, 边立曾. 超微生物是大洋多金属结核成矿的建造者[J]. 科学通报, 1997, 42(4): 337-343.
127 HUANG Jin, ZHANG Fusheng, LIN Chengyi, et al. Study on rhythm of the stromatolitic lamina in the manganese nodules from the East Pacific Ocean[J]. Donghai Marine Science, 1999, 17(3): 33-39.
127 黄瑾, 张富生, 林承毅, 等. 东太平洋锰结核中叠层石纹层韵律的研究[J]. 东海海洋, 1999, 17(3): 33-39.
128 HAN Xiqiu, WANG Huiqun, FANG Yinxia, et al. Spectral analyses of rhythmic laminae of stromatolite in manganese nodules from the Pacific Ocean and their significance[J]. Acta Geologica Sinica, 2001, 75(4): 548-553.
128 韩喜球, 王惠群, 方银霞, 等. 东太平洋锰结核中叠层石纹层周期信号的谱分析及其意义[J]. 地质学报, 2001, 75(4): 548-553.
129 DENG Yu, ZHANG Fusheng, LIN Chengyi, et al. Electron microscopic observation of ultramicrobial fossils in deep-sea manganese nodules crust[J]. Journal of Chinese Electron Microscopy Society, 2006, 25(B08): 352-353.
129 邓昱, 张富生, 林承毅, 等. 深海锰结核结壳中超微生物化石的电镜观察[J]. 电子显微学报, 2006, 25(B08): 352-353.
130 REID R P. Nonskeletal peloidal precipitates in upper Triassic reefs, Yukon Territory (Canada)[J]. Journal of Sedimentary Petrology, 1987, 57(5): 893-900.
131 DUPRAZ C, VISSCHER P T, BAUMGARTNER L K, et al. Microbe-mineral interactions: early CaCO3 precipitation in a Recent hypersaline lake (Eleuthera Islands, Bahamas)[J]. Sedimentology, 2004, 51(4): 745-765.
132 RIDING R, TOMáS S. Stromatolite reef crusts, Early Cretaceous, Spain: bacterial origin of in situ-precipitated peloid microspar? [J]. Sedimentology, 2010, 53(1): 23-34.
133 ADACHI N, EZAKI Y, LIU Jianbo, et al. Late Ediacaran Boxonia-bearing stromatolites from the Gobi-Altay, western Mongolia[J]. Precambrian Research, 2019, 334:105470.
134 ZHANG Wei. Important development and significance of modern carbonate stromatolites [J]. Advances in Earth Science, 2020, 35(1): 70-78.
134 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
135 WANG Long, KHALID L, MUHAMMAD R, et al. The genesis, classification, problems and prospects of microbial carbonates: implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1 005-1 023.
135 王龙, KHALID L, MUHAMMAD R, 等. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1 005-1 023.
文章导航

/