综述与评述

海洋涡旋在模态水形成与输运中的作用

  • 许丽晓 ,
  • 刘秦玉
展开
  • 1.中国海洋大学深海圈层与地球系统前沿科学中心&物理海洋教育部重点实验室,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室,山东 青岛 266237
许丽晓(1985-),女,山东莱芜人,副教授,主要从事海洋—大气相互作用研究. E-mail:lxu@ouc.edu.cn

收稿日期: 2021-06-07

  修回日期: 2021-08-25

  网络出版日期: 2021-10-15

基金资助

国家自然科学基金面上项目“海洋涡旋在北太平洋副热带西部模态水输运中的作用”(41876006)

Mesoscale Eddy Effects on Subduction and Transport of the North Pacific Subtropical Mode Water

  • Lixiao XU ,
  • Qinyu LIU
Expand
  • 1.Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory,Ocean University of China,Qingdao 266100,China
    2.Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China
XU Lixiao (1985-), female, Laiwu County, Shandong Province, Associated Professor. Research areas include air-sea interaction. E-mail:lxu@ouc.edu.cn

Received date: 2021-06-07

  Revised date: 2021-08-25

  Online published: 2021-10-15

Supported by

the Natural Science Foundation of China "Mesoscale eddy effect on the transport of the North Pacific Subtropical Mode Water"(41876006)

摘要

模态水在全球气候变化中有着重要作用。但是由于缺乏海洋次表层的高分辨率观测,对空间尺度为百公里的海洋中尺度涡旋如何影响空间尺度大于千公里的模态水的认识仍然欠缺。为了解决这一科学难题,在科技部的支持下,实施了一次成功的海上观测试验。系统梳理了基于该观测数据所发表的有关涡旋影响模态水潜沉和输运的主要研究成果:①捕捉并揭示了中尺度涡导致混合层水潜沉的过程和动力机制;②发现了中尺度涡携带模态水迁移的新路径;③阐明了模态水多核结构的形成机制。研究结果揭示了黑潮延伸体海域中尺度涡旋影响大尺度模态水的物理本质,为该海域多时空尺度海洋—大气相互作用作出了一定的贡献。通过对该次观测试验结果的分析和总结,得到了如下新的科学推论:海洋次中尺度过程对模态水的形成和耗散也具有重要影响。

本文引用格式

许丽晓 , 刘秦玉 . 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021 , 36(9) : 883 -898 . DOI: 10.11867/j.issn.1001-8166.2021.085

Abstract

Mode Mode water is important for the climate system as memories of climate variability and by 'breathing in' anthropogenic carbon dioxide. Due to the lack of subsurface observations, many fundamental questions remain regarding how it is subducted and transported by mesoscale eddies.

Results

from a field campaign from March 2014 that captured the eddy effects on mode water subduction and transport south of the Kuroshio Extension east of Japan are reviewed here. The experiment deployed 17 Argo floats in an Anticyclonic Eddy (AE) with enhanced daily sampling. Analysis of over 5 000 hydrographic profiles following the eddy reveals that: ①the eddy-induced North Pacific Subtropical Mode Water (STMW) subduction process is successfully captured for the first time, and the eddy subduction mechanism is revealed. We find potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AE core, with enhanced subduction near the southeastern rim of the AE. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. ②A new mode water transport pathway by anticyclonic eddies is found. AEs transport STMW westward across the Izu Ridge through a bathymetric gap between the Hachijojima and Bonin Islands, forming a cross-ridge pathway for STMW transport. Because of the eddy transport, the shallow STMW (< 400 m) intrudes through the gap westward, which is also observed in Argo climatology. ③the formation mechanism of STMW multicore structure is clarified. We find that AEs formed east of 150°E could trap the local cold and dense STMW and migrate westward. Since sea surface temperatures increase toward the west, warmer and lighter STMWs are formed during the winter ventilation process as the AEs move westward. The newly formed STMW ride on the preexisting cold and dense STMW inside the eddy core, forming a multicore structure in the STMW. These findings update the traditional understanding of mode water. Mesoscale eddies are usually accompanied by submesoscale processes, whose effects on mode water seems to be considerably significant as well and need to be studied in the future.

参考文献

1.LING L L,FAN W,RUI X H. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening[J]. Deep Sea Research Part I: Dceanographic Research Papers,2011,58(6):658-667.
2.BATES N R,PEQUIGNET A C,JOHNOSN R J,et al. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean[J]. Nature,2002,420(6 915):489-493.
3.PALTER J,LOZIER M,BARBER R. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre[J]. Nature,2005,437(7 059):687-692.
4.MASUZAWA J. Subtropical mode water[J]. Deep Sea Research,1969,16(5):463-472.
5.SUGA T,HANAWA K,TOBA Y. Subtropical mode water in the 137°E section[J]. Journal of Physical Oceanography,2010,19(10):1 605-1 619.
6.SUGA T,MOTOKI K,AOKI Y,et al. The North Pacific climatology of winter mixed layer and mode waters[J]. Journal of Physical Oceanography,2004,34(1):3-22.
7.LIU Q,HU H. A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island[J]. Geophysical Research Letters,2007,34(12). DOI: 10.1029/2007GL029510.
8.HU Haibo. Subduction of the low potential vorticity water in the Central North Pacific and transportation to the East of Taiwan Island[D]. Qingdao: Ocean University of China,2008.
8.胡海波. 北太平洋低位势涡度水的潜沉和向台湾以东的输运[D]. 青岛:中国海洋大学,2008.
9.HANANWA K. Interannual variations in the wintertime outcrop area of Subtropical Mode Water in the western North Pacific Ocean[J]. Atmosphere-Ocean,1987,25(4):358-374.
10.KUBOKAWA A,INUI T. Subtropical countercurrent in an idealized ocean GCM [J]. Journal of Physical Oceanography,1999,29(6):1 303-1 313.
11.KOBASHI F,MITSUDERA H,XIE S P. Three subtropical fronts in the North Pacific: observational evidence for mode water‐induced subsurface frontogenesis[J]. Journal of Geophysical Research: Oceans,2006,111:C09033.
12.DESER C,ALEXANDER M A,TIMLIN M S. Upper-ocean thermal variations in the North Pacific during 1970-1991[J]. Journal of Climate,1946,9(8):1 840-1 855.
13.XIE S P,KUNITANI T,KUBOKAWA A,et al. Interdecadal thermocline variability in the North Pacific for 1958-1997: a GCM simulation[J]. Journal of Physical Oceanography,2000,30:2 798-2 813.
14.XIE S P,XU L X,LIU Q,et al. Dynamical role of mode water ventilation in decadal variability in the Central Subtropical Gyre of the North Pacific[J]. Journal of Climate,2011,24(4):1 212-1 225.
15.XU L X,XIE S P,LIU Q,et al. Response of the North Pacific Subtropical Countercurrent and its variability to global warming[J]. Journal of Oceanography,2012,68:127-137.
16.XU L X,XIE S P,LIU Q. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections[J]. Journal of Geophysical Research: Oceans,2012,117:C12009.
17.WU B,LIN X,YU L. North Pacific subtropical mode water is controlled by the Atlantic Multidecadal Variability[J]. Nature Climate Change,2020,10(3):238-243.
18.MEN W,HE J,WANG F,et al. Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident[J]. Scientific Reports,2015,5:7757.
19.AOYAMA M,UEMATSU M,TSUMUNE D,et al. Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released 134Cs and 137Cs[J]. Biogeosciences,2013,10(5):3 067-3 078.
20.HANAWA K,TALLEY L D. Mode waters[M]// CHURCH J. Ocean circulation and climateby. London,United Kingdom: Academic Press,2001:373-386.
21.OKA E,BO Q. Progress of North Pacific mode water research in the past decade[J]. Journal of Oceanography,2012,68(1):5-20.
22.CHELTO D B,SCHLAX M G,SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography,2011,91(2):167-216.
23.GENT P R,MCWILLIAMS J C. Isopycnal mixing in Ocean Circulation Models[J]. Journal of Physical Oceanography,1990,20(1):150-155.
24.ZHANG Z,WEI W,QIU B. Oceanic mass transport by mesoscale eddies[J]. Science,2014,345:322-324.
25.UEHARA H,SUGA T,HANAWA K,et al. A role of eddies in formation and transport of North Pacific Subtropical Mode Water[J]. Geophysical Research Letters,2003,30(13):1705.
26.PAN Aijun,LIU Qinyu. Mesoscale eddy effects on the wintertime vertical mixing in the formation region of the North Pacific Subtropical Mode Water[J]. Chinese Science Bulletin,2005,50(14): 1 523-1 530.
26.潘爱军,刘秦玉. 北太平洋副热带西部模态水形成区海洋涡旋对冬季垂直混合过程的影响[J]. 科学通报,2005,50(14):1 523-1 530.
27.QIU B,HACKER P,CHEN S,et al. Observations of the Subtropical Mode water evolution from the Kuroshio Extension System study[J]. Journal of Physical Oceanography,2006,36(3): 457-473.
28.OKA E,SUGA T,SUKIGARA C,et al. "Eddy Resolving" observation of the North Pacific Subtropical Mode Water[J]. Journal of Physical Oceanography,2011,41(4):666-681.
29.KOUKETSU S,TOMITA H,OKA E,et al. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific[J]. Journal of Oceanography,2012,68(1):63-77.
30.LIU C,LI P. The impact of meso-scale eddies on the Subtropical Mode Water in the western North Pacific[J]. Journal of Ocean University of China,2013,12(2):230-236.
31.MARSHALL D. Subduction of water masses in an eddying ocean[J]. Journal of Marine Research,1997,55(2):201-222.
32.QU T,XIE S P,MITSUDERA H,et al. Subduction of the North Pacific Mode Waters in a Global High-Resolution GCM[J]. Journal of Physical Oceanography,2002,32(3):746-763.
33.RAINVILLE L,JAYNE S R,MCCLEANcclean J L,et al. Formation of Subtropical Mode Water in a high-resolution ocean simulation of the Kuroshio Extension region[J]. Ocean Modelling,2007,17(4):338-356.
34.NISHIKAWA S,TSUJINO R,SAKAMOTO R,et al. Effects of Mesoscale Eddies on Subduction and Distribution of Subtropical Mode Water in an Eddy-Resolving OGCM of the western North Pacific[J]. Journal of Physical Oceanography,2010,40(8):1 748-1 765.
35.STOMMEL H. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below[J]. Proceedings of the National Academy of Sciences of the United States of America,1979,76(7):3 051-3 055.
36.HUANG R X,QIU B. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific[J]. Journal of Physical Oceanography,1994,24(7):1 608-1 622.
37.XU L X,XIE S P,MCCLEAN J L,et al. Mesoscale eddy effects on the subduction of North Pacific mode waters[J]. Journal of Geophysical Research Oceans,2015,119(8):4 867-4 886.
38.XU L X,LI P,XIE S P,et al. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific[J]. Nature Communications,2016,7:10505.
39.XU L X,XIE S P,JING Z,et al. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge[J]. Geophysical Research Letters,2017,44:1 857-1 865.
40.XU L X,XIE S P,LIU Q,et al. Evolution of the North Pacific Subtropical Mode Water in Anticyclonic Eddies[J]. Journal of Geophysical Research: Oceans,2017,122:10 118-10 130.
41.LIU C,XU L X,XIE S P,et al. Effects of anticyclonic eddies on the multicore structure of the North Pacific Subtropical Mode Water based on argo observations[J]. Journal of Geophysical Research Oceans,2019,124(4):8 400-8 413.
42.DING Y,XU L X,ZHANG Y. Impact of anticyclonic eddies under stormy weather on the mixed layer variability in April south of the Kuroshio Extension[J]. Journal of Geophysical Research: Oceans,2021,126:e2020JC016739.
43.CUSHMAN-ROISIN B. Subduction[M]// MULLER P,HENDERSON D. Dynamics of the oceanic surface mixed layer. Proceedings of 'Aha Huliko' a Hauaiian Winter workshop (4th).Haeaii Iustitute of Geophysics,1987:181-196.
44.WILLIAMS R G. The Influence of air-sea interaction on the ventilated thermocline[J]. Journal of Physical Oceanography,1989,19(9):1 255-1 267.
45.WILLIAMS R G. The role of the mixed layer in setting the potential vorticity of the main thermocline[J]. Journal of Physical Oceanography,1991,21(12):1 803-1 814.
46.BISHOP S P,BRYAN F O. A comparison of Mesoscale Eddy Heat Fluxes from observations and a High-Resolution Ocean Model simulation of the Kuroshio Extension[J]. Journal of Physical Oceanography,2013,43(12):2 563-2 570.
47.OKA E,BO Q,KOUKETSU S,et al. Decadal seesaw of the Central and Subtropical Mode Water formation associated with the Kuroshio Extension variability[J]. Journal of Oceanography,2012,68(2):355-360.
48.FLIERL G R. Particle motions in large-amplitude wave fields[J]. Geophysical & Astrophysical Fluid Dynamics,1981,18(1/2):39-74.
49.LEE M M,MARSHALL D P,WILLIAMS R G. On the eddy transfer of tracers: advective of diffusive?[J]. Journal of Marine Research,1997,55(3): 483-505.
50.WANG Hui,WANG Zhaoyi,ZHU Xueming,et al. Numerical study and prediction of nuclear contaminant transport from Fukushima Daiichi Nuclear Power Plant in the North Pacific Ocean[J]. Chinese Science Bulletin,2012,5 757(22): 2 111-2 118.
50.王辉,王兆毅,朱学明,等. 日本福岛放射性污染物在北太平洋海水中的输运模拟与预测[J]. 科学通报,2012,57(22):2 111-2 118.
51.GAO W,LI P,XIE S P,et al. Multicore structure of the North Pacific subtropical mode water from enhanced Argo observations[J]. Geophysical Research Letters,2016,43(3):1 249-1 255.
52.SUKIGARA C,SUGA T,SAINO T,et al. Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific[J]. Journal of Oceanography,2011,67(1):77-85.
文章导航

/