量子重力仪在地球科学中的应用进展
收稿日期: 2020-12-29
修回日期: 2021-02-04
网络出版日期: 2021-07-02
基金资助
中国自然资源航空物探遥感中心项目“远洋航路搭载测量与保障技术研究及应用试验”(DD20189831)
Progress of Quantum Gravimeter Applied in the Fields of Earth Science
Received date: 2020-12-29
Revised date: 2021-02-04
Online published: 2021-07-02
Supported by
the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program "Research and application test of carrying measurement and support technology on ocean route"(DD20189831)
量子重力仪是近30年来快速发展起来的一种新型绝对重力仪,目前对该新型重力仪的研究已进入小型化和实用化阶段。国内外基于量子重力仪的地球科学研究发展较快,应用研究包括火山活动监测、海洋绝对重力测绘和航空绝对重力测量等。由浙江省量子精密测量重点实验室研制的ZAG-E型量子重力仪具有体积小、易搬运和稳定性高等优点,其绝对重力测量精确度可以达到10 μGal。基于该量子重力仪,开展了地震台连续绝对重力测量的相关研究,着重介绍了在四川省甘孜藏族自治州燕子沟地震台进行的连续绝对重力测量,该研究有助于构建该地区的重力基准和分析地质地形构造以及地质活动所带来的影响。基于量子重力仪的精密重力测量为地球科学的研究提供了一种新型的技术手段,同时也提供了可靠的基础绝对重力数据。未来,量子重力仪有望被越来越广泛地应用于地球物理和地表绝对重力测绘等地球科学领域。
朱栋 , 高世腾 , 朱欣欣 , 吴彬 , 程冰 , 林强 . 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021 , 36(5) : 480 -489 . DOI: 10.11867/j.issn.1001-8166.2021.034
Quantum gravimeter is a new type of absolute gravimeter that has been rapidly developed in the past 30 years. At present, the research on this new type of gravimeter has entered the stage of miniaturization and practical applications. The applications in the fields of earth science research based on quantum gravimeters at home and abroad have been developed rapidly, including volcanic activity monitoring, marine absolute gravity measurement, and airborne absolute gravity measurement, etc. The ZAG-E type of quantum gravimeter developed by our laboratory has the advantages of small size, easy handling, and high stability. Its absolute gravity measurement accuracy can reach 10 μGal. Based on this quantum gravimeter, our team has carried out related research on continuous absolute gravity measurement at seismic stations, focusing on the continuous absolute gravity measurement performed at the Yanzigou Seismic Station in Ganzi Tibetan Autonomous Prefecture, Sichuan Province. These studies are helpful for the construction of the gravity data of the area and the analysis of the geological topography and the geological activities. The precision gravity measurement based on quantum gravimeters can provide a new method for the research of earth science, and it can also provide reliable absolute gravity data. In the future, quantum gravimeters are expected to be more and more widely used in geosciences such as geophysics and absolute gravity surveying and mapping on the surface.
Key words: Quantum gravimeter; Geophysics; Continuous absolute gravimetry
1 | CAMP M VAN, DE VIRON O, WATLET A, et al. Geophysics from terrestrial time-variable gravity measurements [J]. Reviews of Geophysics, 2017, 55(4): 938-992. |
2 | FORES B, CHAMPOLLION C, LE MOIGNE N, et al. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification [J]. Geophysical Journal International, 2017, 208(1): 269-280. |
3 | KENNEDY J, FERRé T P A, CREUTZFELDT B. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone[J]. Water Resources Research, 2016, 52(9): 7 244-7 261. |
4 | CAMP M VAN, DE VIRON O, SCHERNECK H G, et al. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): 148-227. |
5 | ROMAIDES A J, BATTIS J C, SANDS R W, et al. A comparison of gravimetric techniques for measuring subsurface void signals [J]. Journal of Physics D: Applied Physics, 2001, 34(3): 433-443. |
6 | WU Bin, WANG Zhaoying, CHENG Bing, et al. The investigation of a μGal-level cold atom gravimeter for field applications [J]. Metrologia, 2014, 51(5): 452-458. |
7 | CARBONE D, POLAND M P, DIAMENT M, et al. The added value of time-variable microgravimetry to the understanding of how volcanoes work[J]. Earth-Science Reviews, 2017, 169:146-179. |
8 | CARBONE D, CANNAVò F, GRECO F, et al. The benefits of using a network of superconducting gravimeters to monitor and study active volcanoes[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4 035-4 050. |
9 | RYMER H, BROWN G C. Gravity fields and the interpretation of volcanic structures: Geological discrimination and temporal evolution[J]. Journal of Volcanology and Geothermal Research, 1986, 27(3): 229-254. |
10 | FURUYA M, OKUBO S, SUN W, et al. Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 148-227. |
11 | SUN Wenke. Progress and current situation of research on theory and observation of gravity change caused by seismicity and volcanism [J]. Journal of Geodesy and Grodynamics, 2008, 28(4): 44-53,71. |
11 | 孙文科.地震火山活动产生重力变化的理论与观测研究的进展及现状[J].大地测量与地球动力学,2008(4):44-53,71. |
12 | LIU Dongxun, LIU Wentai. Gravity predicts seismic behavior [J]. Earthquake Research in Sichuan, 1984(1): 27-31. |
12 | 刘栋勋,刘文泰.重力预报地震动态[J].四川地震,1984(1):27-31. |
13 | IMANISHI Y, SATO T, HIGASHI T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5 695): 476-479. |
14 | SASTRY R G, PANT A. Method for isolation of gravity signatures due to major earthquakes from satellite gravity date [M]//Symposium on the application of geophysics to engineering and environmental problems 2014. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 2014: 174-180. |
15 | KIMURA M, KAME N, WATADA S, et al. Earthquake-induced prompt gravity signals identified in dense array data in Japan [J]. Earth, Planets and Space, 2019, 71(1): 27-38. |
16 | M?KINEN J, AMALVICT M, SHIBUYA K, et al. Absolute gravimetry in Antarctica: Status and prospects [J]. Journal of Geodynamics, 2007, 43(3): 339-357. |
17 | KLIMESCH W, HANSLMAYR S, SAUSENG P, et al. Distinguishing the evoked response from phase reset: A comment to M?kinenet al. [J]. NeuroImage, 2006, 29(3): 808-811. |
18 | Quantum. Deployment of our quantum gravimeter on Mount Etna[EB/OL].(2020-07-31)[2020.10.12].. |
19 | FALLER J E, MARSON I. Ballistic methods of measuring g- the direct free-fall and symmetrical rise-and-fall methods compared [J]. Metrologia, 2005, 25(1): 49-55. |
20 | NIEBAUER T M, SASAGAWA G S, FALLER J E, et al. A new generation of absolute gravimeters [J]. Metrologia, 1995, 32(3): 159-180. |
21 | OKUBO S, YOSHIDA S, SATO T, et al. Verifying the precision of a new generation absolute gravimeter FG5—Comparison with superconducting gravimeters and detection of oceanic loading tide [J]. Geophysical Research Letters, 1997, 24(4): 489-492. |
22 | NIEBAUER T M, BILLSON R, SCHIEL A, et al. The self-attraction correction for the FG5X absolute gravity meter [J]. Metrologia, 2013, 50(1): 1-8. |
23 | PETERS A, CHUNG K Y, CHU S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61. |
24 | KASEVICH M, CHU S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer [J]. Applied Physics B, 1992, 54(5): 321-332. |
25 | SUGARBAKER A. Atom interferometry in a 10 m fountain [D]. California: Stanford University, 2014. |
26 | HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 43 610. |
27 | MéNORET V, VERMEULEN P, LE MOIGNE N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter [J]. Scientific Reports, 2018, 8(1): 12 300. |
28 | BELL R E, HANSEN R O. The rise and fall of early oil field technology: The torsion balance gradiometer [J]. The Leading Edge, 1998, 17(1): 81-83. |
29 | LEEUWEN E. BHP develops airborne gravity gradiometer for mineral exploration [J]. Geophysics, 2000, 19(12): 1 265-1 376. |
30 | MALEKI L, YU N, KOHEL J. Quantum gravity gradiometer for sub-surface imaging [M]// Space 2004 Conference and Exhibit. American Institute of Aeronautics and Astronautics. 2004. |
31 | RUMMEL R. Gravity gradiometry: From Loránd E?tv?s to modern space age [J]. Acta Geodaetica et Geophysica Hungarica, 2002, 37(4): 435-444. |
32 | WU Xinan. Gravity gradient survey with a mobile atom interferometer [D]. California: Stanford University, 2009. |
33 | WU Xuejian, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer [J]. Science Advances, 2019, 5(9): eaax0800. |
34 | GEIGER R, MENORET V, STERN G, et al. Detecting inertial effects with airborne matter-wave interferometry [J]. Nature Communications, 2011, 2:474-480. |
35 | ROURA A, ZELLER W, SCHLEICH W P. Overcoming loss of contrast in atom interferometry due to gravity gradients [J]. New Journal of Physics, 2014, 16(12): 123 012. |
36 | CHEINEY P, FOUCHé L, TEMPLIER S, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter [J]. Physical Review Applied, 2018, 10(3): 034030. |
37 | BIDEL Y, ZAHZAM N, BLANCHARD C, et al. Absolute marine gravimetry with matter-wave interferometry [J]. Nature Communications, 2018, 9(1): 627-635. |
38 | BIDEL Y, ZAHZAM N, BRESSON A, et al. Absolute airborne gravimetry with a cold atom sensor [J]. Journal of Geodesy, 2020, 94(2): 20-29. |
39 | ONERA. ONERA's cold atom don't get seasick[EB/OL].[2020-05-08]. ?page=85. |
40 | HUANG Panwei, TANG Biao, CHEN Xi, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters [J]. Metrologia, 2019, 56(4): 045012. |
41 | ZHOU Minkang, DUAN Xiaochun, CHEN Lele, et al. Micro-Gal level gravity measurements with cold atom interferometry [J]. Chinese Physics B, 2015, 24(5): 050401. |
42 | CHEN Bin, LONG Jinbao, XIE Hongtai, et al. Portable atomic gravimeter operating in noisy urban environments [J]. Chinese Optics Letters, 2020, 18(9): 090201. |
43 | WU Bin, WANG Zhaoying, CHENG Bing, et al. A study of the μ-Gal-level cold atom gravimeter [J]. Geophysical and Geochemical Exploration, 2015, 39(): 47-52. |
43 | 吴彬,王兆英,程冰,等.微伽级冷原子重力仪研究[J].物探与化探,2015,39():47-52. |
44 | WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based on atomic gravimeter [J]. Acta Physica Sinica, 2020, 69(6): 25-32. |
44 | 吴彬,周寅,程冰,等.基于原子重力仪的车载静态绝对重力测量[J].物理学报,2020,69(6):25-32. |
45 | CHENG Bing, WU Bin, LIN Qiang, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship [J]. Acta Physica Sinica,2021,70(4):040304. |
45 | 程冰,吴彬,林强,等.船载系泊状态下基于原子重力仪的绝对重力测量[J].物理学报,2021,70(4):040304. |
46 | JIANG Z, PáLINKá? V, FRANCIS O, et al. Relative gravity measurement campaign during the 8th international comparison of absolute gravimeters (2009)[J]. Metrologia, 2011, 49(1): 95-107. |
47 | WU Shuqing, FENG Jinyang, LI Chunjian, et al. The results of CCM.G-K2.2017 key comparison [J]. Metrologia, 2020, 57(1A): 07002. |
48 | DUAN Xiaochun, ZHOU Minkang, MAO Dekai, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617. |
49 | WENG Kanxing, ZHOU Yin, ZHU Dong, et al. High-accuracy gravity measurement with miniaturized quantum gravimeter [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(1): 123 456-123 456. |
49 | 翁堪兴,周寅,朱栋,等. 小型化量子重力仪高精度重力测量[J]. 中国科学:物理学,力学&天文学,2020,50(1):123 456-123 456. |
/
〈 |
|
〉 |