“一带一路”沿线国家农作物虚拟水贸易时空格局及驱动因素分析
收稿日期: 2021-02-28
修回日期: 2021-03-28
网络出版日期: 2021-05-31
基金资助
国家自然科学基金联合基金项目“四维同化框架下荒漠河岸林蒸散与地下水互制机理解耦建模”(U2003105);国家对地观测科学数据中心开放基金项目“青藏高原高时空分辨率土壤湿度及肥力专题产品研制”(DAOP 2020003)
Analysis of Spatiotemporal Pattern and Drivers of Virtual Crops Water Trade Along the Belt and Road
Received date: 2021-02-28
Revised date: 2021-03-28
Online published: 2021-05-31
Supported by
the National Natural Science Foundation of China “Decoupling modeling the interaction mechanism between evapotranspiration and groundwater over desert riparian forest under the framework of four-dimensional assimilation”(U2003105);The Open Research Fund of National Earth Observation Data Center “Development of special products on soil moisture and fertility with high temporal and spatial resolution of Qinghai-Tibet Plateau”(DAOP2020003)
“一带一路”沿线地区水资源短缺且空间分布不均衡,虚拟水贸易实现了对水资源的远距离空间调配。以2010—2018年“一带一路”沿线59个国家和37种农作物为研究对象核算各国农作物虚拟水贸易,利用标准差椭圆、Moran's I指数、LISA指数刻画农作物虚拟水贸易的时空格局特征,通过地理探测器和地理加权回归模型分析农作物虚拟水贸易的驱动因素及其空间异质性。研究发现:
陈良侃 , 陈少辉 . “一带一路”沿线国家农作物虚拟水贸易时空格局及驱动因素分析[J]. 地球科学进展, 2021 , 36(4) : 399 -412 . DOI: 10.11867/j.issn.1001-8166.2021.040
Water resources are scarce and unevenly distributed along the Belt and Road, whereas virtual water trade could achieve the spatial allocation of water resources over long distances. The virtual crop water trade was calculated, including 37 crops from 59 countries along the Belt and Road between 2010-2018.Based on the results, the spatiotemporal patterns of virtual crop water trade were studied with the method of the standard deviation ellipse, Moran's I index, and LISA index, and the spatial variation of driving forces were analyzed by the geographical detector and geographically weighted regression. The proportion of "low water-consuming and high export" of crops was 4.013%, and the "high water-consuming and high export" was 1.926% among these 8countries. Its import spatiotemporal pattern had a trend of contraction, conversely, the export showed an expansive trend. Some aggregation characteristics arose in the local area, with the high-high concentrated regions for import were mainly distributed among South Asia, and the high-high concentrated areas for export were almost in Central and Eastern Europe. The significant drivers could explain the forcing of net crop virtual water exports well along the Belt and Road, with negative driving characteristics for GDP and positive driving characteristics for arable land area, while population scale, forest area, and the number of bordering neighbors showed positive and negative bipolar driving characteristics among different countries.
1 | LIU Weidong. Scientific understanding of the Belt and Road Initiative of China and related research themes[J]. Progress in Geography, 2015, 34(5):538-544. |
1 | 刘卫东. “一带一路”战略的科学内涵与科学问题[J]. 地理科学进展, 2015, 34(5): 538-544. |
2 | LIU Weidong, SONG Zhouying, LIU Zhigao, et al. Progress in research on the Belt and Road Initiative[J]. Acta Geographica Sinica, 2018, 73(4): 620-636. |
2 | 刘卫东, 宋周莺, 刘志高, 等. “一带一路”建设研究进展[J]. 地理学报, 2018, 73(4): 620-636. |
3 | CHEN Mingxing, Yuwen SUI, LU Dadao, et al. On the fusion development of the Belt and Road Initiative and new-type urbanization[J]. Science & Technology Review, 2018, 36(3): 82-90. |
3 | 陈明星, 隋昱文, 陆大道, 等.“一带一路”与新型城镇化的融合发展[J]. 科技导报,2018,36(3):82-90. |
4 | YANG Yanzhao, FENG Zhiming, SUN Tong, et al. Water resources endowment and exploitation and utilization of countries along the Belt and Road[J]. Journal of Natural Resources, 2019, 34(6): 1 146-1 156. |
4 | 杨艳昭, 封志明, 孙通, 等. “一带一路”沿线国家水资源禀赋及开发利用分析[J]. 自然资源学报, 2019, 34(6): 1 146-1 156. |
5 | LIU Zhenwei, CHEN Shaohui. Analysis of water resources and their utilization in countries targeted by the Belt and Road initiative[J]. Arid Zone Research, 2020, 37(4): 809-818. |
5 | 刘振伟, 陈少辉. “一带一路”沿线国家水资源及开发利用[J]. 干旱区研究, 2020, 37(4): 809-818. |
6 | ALLAN J A. Virtual water: A strategic resource global solutions to regional deficits[J]. Ground Water, 1998, 36(4): 545-546. |
7 | CHENG Guodong. Virtual water—A strategic instrument to achieve water security[J]. Bulletin of Chinese Academy of Sciences, 2003, 4(1): 260-265. |
7 | 程国栋. 虚拟水——中国水资源安全战略的新思路[J]. 中国科学院院刊, 2003, 4(1): 260-265. |
8 | LI Zhaoyao, WANG Ning, WEN Zheng, et al. Evolution and contrast of water footprint research at home and abroad based on bibliometric analysis[J]. Ecological Economy, 2020, 36(11): 180-187. |
8 | 李兆耀, 王宁, 温正, 等. 水足迹研究演变与中外研究对比——基于文献计量分析[J]. 生态经济, 2020, 36(11): 180-187. |
9 | HOEKSTRA A Y, HUNG P Q. Globalisation of water resources: International virtual water flows in relation to crop trade[J]. Global Environmental Change—Human and Policy Dimensions, 2005, 15(1): 45-56. |
10 | YANG H, WANG L, ABBASPOUR K C, et al. Virtual water trade: An assessment of water use efficiency in the international food trade[J]. Hydrology and Earth System Sciences, 2006, 10(3): 443-454. |
11 | LIU J, ZEHNDER A J B, YANG H. Global consumptive water use for crop production: The importance of green water and virtual water[J]. Water Resources Research, 2009, 45(5):1-15. |
12 | GUAN D, HUBACEK K. Assessment of regional trade and virtual water flows in China[J]. Ecological Economics, 2007, 61(1): 159-170. |
13 | LENZEN M. Understanding virtual water flows: A multiregion input-output case study of Victoria[J]. Water Resources Research, 2009, 45(9):1-11. |
14 | MEKONNEN M M, HOEKSTRA A Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat[J]. Hydrology and Earth System Sciences, 2010, 14(7): 1 259-1 276. |
15 | DALIN C, KONAR M, HANASAKI N, et al. Evolution of the global virtual water trade network[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5 989-5 994. |
16 | LIN L, CHEN Y D, HUA D, et al. Provincial virtual energy-water use and its flows within China: A multiregional input-output approach[J]. Resources Conservation and Recycling, 2019, 151:104486. |
17 | SUN Siao, ZHENG Xiangyi, LIU Haimeng. Local and distant virtual water trades in Beijing-Tianjin-Hebei region[J]. Acta Geographica Sinica, 2019,74(12):2 631-2 645. |
17 | 孙思奥, 郑翔益, 刘海猛. 京津冀城市群虚拟水贸易的近远程分析[J]. 地理学报, 2019, 74(12): 2 631-2 645. |
18 | LONG Aihua, XU Zhongmin, ZHANG Zhiqiang. Theory and method of virtual water:A case study of northwest China[J]. Advances in Earth Science, 2004, 19(4):577-584. |
18 | 龙爱华, 徐中民, 张志强. 虚拟水理论方法与西北4省(区)虚拟水实证研究[J]. 地球科学进展, 2004, 19(4): 577-584. |
19 | DU Yihang, WANG Jun, LU Shunzi, et al. Study on characteristics of virtual water flow spatial change and influencing factors in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(6): 1 141-1 151. |
19 | 杜依杭, 王钧, 鲁顺子, 等. 城市化背景下中国虚拟水流动空间变化特征及其驱动因素研究[J]. 北京大学学报:自然科学版, 2019, 55(6): 1 141-1 151. |
20 | ZHU Qirong. Study on virtual water of chinese foreign trade and adjusting of trade structure[J]. China Industrial Economics, 2014, 311(2):58-70. |
20 | 朱启荣. 中国外贸中虚拟水与外贸结构调整研究[J]. 中国工业经济, 2014, 311(2): 58-70. |
21 | CHEN Lixin, SUN Caizhi. Research on formation mechanism and support mechanism of virtual water flows pattern embedded in agricultural products trade[J]. China Soft Science, 2010, 239(11): 44-53. |
21 | 陈丽新, 孙才志. 中国农产品虚拟水流动格局的形成机理与维持机制研究[J]. 中国软科学, 2010, 239(11): 44-53. |
22 | LIU Hongmei, LI Guojun, WANG Keqiang. A study on the determinants of the agricultural virtual water trade between China and other countries[J]. Management World, 2010, 204(9):76-87, 187. |
22 | 刘红梅, 李国军, 王克强. 中国农业虚拟水国际贸易影响因素研究——基于引力模型的分析[J]. 管理世界, 2010, 204(9): 76-87, 187. |
23 | HUANG Min, HUANG Wei. Measurement of virtual water trade and its impact factors in China[J]. China Population, Resources and Environment, 2016, 26(4): 100-106. |
23 | 黄敏, 黄炜. 中国虚拟水贸易的测算及影响因素研究[J]. 中国人口·资源与环境, 2016, 26(4): 100-106. |
24 | MENG Fanxin, XIA Xinming, HU Yuanchao, et al. Virtual water in trade between China and typical countries along the Belt and Road[J]. Strategic Study of CAE, 2019, 21(4):92-99. |
24 | 孟凡鑫, 夏昕鸣, 胡元超, 等. 中国与“一带一路”沿线典型国家贸易虚拟水分析[J]. 中国工程科学, 2019, 21(4): 92-99. |
25 | SUN Caizhi, WANG Zhonghui. Characteristics of virtual water volume flow of agricultural products trade between China and countries along "Belt and Road"[J]. Water Resources Protection, 2019,35(1):14-19,26. |
25 | 孙才志, 王中慧. 中国与“一带一路”沿线国家农产品贸易的虚拟水量流动特征[J]. 水资源保护, 2019, 35(1): 14-19, 26. |
26 | SUN Caizhi, WANG Zhonghui. Driving factors for virtual water trade of agricultural products between China and countries along "Belt and Road"[J]. Journal of Economics of Water Resources, 2020,38(1):1-7, 28, 85. |
26 | 孙才志, 王中慧. 中国和“一带一路”沿线国家农产品虚拟水贸易的驱动因素[J]. 水利经济, 2020, 38(1): 1-7, 28, 85. |
27 | JIA Kun, YANG Yanzhao, FENG Zhiming. An evaluation of the Belt and Road cereals production from a view of spatial-temporal patterns[J]. Journal of Natural Resources, 2019, 34(6): 1 135-1 145. |
27 | 贾琨, 杨艳昭, 封志明. “一带一路”沿线国家粮食生产的时空格局分析[J]. 自然资源学报, 2019, 34(6): 1 135-1 145. |
28 | HOEKSTRA A Y. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade[C]//Proceedings of the international expert meeting on virtual water trade 12, Delft, 2003: 25-47. |
29 | ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements[M]. Rome: FAO Irrigation and drainage paper 56, Food and agriculture of the United Nations, 1998:300. |
30 | WANG Ruoyu. China's virtual water flows in the international trade of agricultural products[D].Nanjing: Nanjing University, 2017. |
30 | 王若愚. 我国农产品国际贸易中的虚拟水流动研究[D]. 南京: 南京大学, 2017. |
31 | CAZCARRO I, DUARTE R, MARTIN-RETORTILLO M, et al. How sustainable is the increase in the water footprint of the Spanish agricultural sector?A provincial analysis between 1955 and 2005-2010[J]. Sustainability, 2015, 7(5): 5 094-5 119. |
32 | KONAR M, HUSSEIN Z, HANASAKI N, et al. Virtual water trade flows and savings under climate change[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3 219-3 234. |
33 | DUARTE R, PINILLA V, SERRANO A. Understanding agricultural virtual water flows in the world from an economic perspective: A long term study[J]. Ecological Indicators, 2016, 61: 980-990. |
34 | LIU J, ZEHNDER A J B, YANG H. Historical trends in China's virtual water trade[J]. Water International, 2007, 32(1): 78-90. |
35 | TUNINETTI M, TAMEA S, LAIO F, et al. A fast track approach to deal with the temporal dimension of crop water footprint[J]. Environmental Research Letters, 2017, 12(7):074010. |
36 | ZIMMER D, RENAULT D. Virtual water in food production and global trade: Review of methodological issues and preliminary results[C]// Virtual water trade: Proceedings of the international expert meeting on virtual water trade. Value of water research report series, 2003:12. |
37 | ZHAO Lu, ZHAO Zuoquan. Projecting the spatial variation of economic based on the specific ellipses in China[J]. Scientia Geographica Sinica, 2014, 34(8): 979-986. |
37 | 赵璐, 赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 2014, 34(8): 979-986. |
38 | CHEN Yiwen, LI Erling. Spatial pattern and evolution of cereal trade networks among the Belt and Road countries[J]. Progress in Geography, 2019, 38(10):1 643-1 654. |
38 | 陈艺文, 李二玲. “一带一路”国家粮食贸易网络空间格局及其演化机制[J]. 地理科学进展, 2019, 38(10): 1 643-1 654. |
39 | WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. |
39 | 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. |
40 | LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1 356-1 366. |
40 | 卢宾宾, 葛咏, 秦昆, 等.地理加权回归分析技术综述[J]. 武汉大学学报:信息科学版, 2020, 45(9): 1 356-1 366. |
/
〈 |
|
〉 |