研究论文

两种耦合模糊控制的局地化方法研究

  • 常明恒 ,
  • 左洪超 ,
  • 摆玉龙 ,
  • 段济开
展开
  • 1.兰州大学大气科学学院,甘肃 兰州 730000
    2.西北师范大学物理与电子工程学院,甘肃 兰州 730070
常明恒(1992-),男,甘肃秦安人,博士研究生,主要从事数据同化观测误差方面的研究. E-mail:changmh19@lzu.edu.cn
左洪超(1964-),男,河北邢台人,教授,主要从事陆面过程以及中小尺度数值模拟的研究. E-mail:zuohch@lzu.edu.cn

收稿日期: 2020-10-09

  修回日期: 2021-01-16

  网络出版日期: 2021-04-19

基金资助

国家自然科学基金项目“中国西北干旱区均匀下垫面上稳定边界层非湍运动和湍流相互作用的观测研究”(41875009)

Two Localization Methods Based on Fuzzy Control

  • Mingheng CHANG ,
  • Hongchao ZUO ,
  • Yulong BAI ,
  • Jikai DUAN
Expand
  • 1.College of Atmosphere Science,Lanzhou University,Lanzhou 730000,China
    2.College of Physics and Electrical Engineering,Northwest Normal University,Lanzhou 730070,China
Chang Mingheng (1992-), male, Qin’an County, Gansu Province, Ph. D student. Research areas include data assimilation observation error. E-mail:changmh19@lzu.edu.cn
Zuo Hongchao (1964-), male, Xingtai County, Hebei Province, Professor. Research areas include land surface process and small and medium-scale numerical simulation. E-mail:zuohch@lzu.edu.cn

Received date: 2020-10-09

  Revised date: 2021-01-16

  Online published: 2021-04-19

Supported by

the National Natural Science Foundation of China “Observational study on the interaction between nonturbulence and turbulence in the stable boundary layer over the uniform underlying surface in the arid region of Northwest China”(41875009)

摘要

在集合数据同化过程中,由于远距离的观测与同化状态之间存在着虚假相关,局地化方法受到广泛关注。此外,由于集合数的限制,容易引起欠采样和协方差被低估等现象,使得滤波效果欠佳。因此,提出模糊控制算法,模糊控制算法主要用于判断观测点与状态更新点之间的距离来匹配相应的观测权重,进而调整局地化系数来更新背景误差协方差和观测误差协方差矩阵,从而得到有效的状态估计。基于背景误差协方差局地化方法和观测误差协方差局地化方法,耦合模糊控制,形成了新的算法—模糊控制的背景误差协方差局地化方法和模糊控制的观测误差协方差局地化方法。利用Lorenz-96模型,在小集合数和局地化半径下,得出模糊控制的背景误差协方差局地化方法和模糊控制的观测误差协方差局地化方法有较好的同化性能。通过分析泰勒图谱甄别出新算法与观测点具有高度的相关性以及较小的空间变异性。最后,在不同维数的模糊控制器下,新算法的有效性进一步得到验证。为今后数据同化误差处理方面提供了良好的研究平台。

本文引用格式

常明恒 , 左洪超 , 摆玉龙 , 段济开 . 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021 , 36(2) : 185 -197 . DOI: 10.11867/j.issn.1001-8166.2021.014

Abstract

In the process of ensemble data assimilation, due to the false correlation between the remote observation and the assimilation state, which affects the performance of DA, more attention has been paid to the localization methods. In addition, because of the limited ensemble size, it is easy to cause phenomena such as under-sampling and underestimation of covariance, which makes the filtering effect divergent. The fuzzy control algorithm is proposed, which is mainly used to judge the distance between the observation point and the state update point to assign the corresponding observation weight to the observation point, and then adjust the localization coefficient to update the background error covariance and observation error covariance, respectively. Thus, an effective state estimation is obtained. Based on BL and RL method, coupled with fuzzy control, the Background Covariance Fuzzy (BCF) and Fuzzy Observation Covariance (FOC) were proposed. We conducted an experiment on the Lorenz-96 model, and the BCF and the FOC method exhibited better assimilation effect with the small ensemble size and localization radius. By analyzing the Taylor diagram, it was found that the new algorithms had a high correlation with the observation point and small spatial variability. Finally, the robustness of BCF and FOC algorithms was further verified under the different dimensional fuzzy controller. It will provide a good research platform for data assimilation error processing in the future.

参考文献

1 KALMAN R E,BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering,1961,96:95-108.
2 GRIMBLE M J. Polynomial systems approach to optimal linear filtering and prediction[J]. International Journal of Control,1985,41(6):1 545-1 564.
3 EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research,1994,99 (C5):10 143-10 162.
4 EVENSEN G,Leeuwen P J VAN. An ensemble Kalman smoother for nonlinear dynamics[J]. Monthly Weather Review,2000,128(6):1 852-1 867.
5 EVENSEN G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics,2003,53(4):343-367.
6 HAMILL T M,WHITAKER J S,SNYDER C. Distance-dependent filtering of background error covariance estimates in an Ensemble Kalman Filter[J]. Monthly Weather Review,2001,129(11):2 776-2 790.
7 BISHOP C H,ETHERTON B J,MAJUMDAR S J. Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects[J]. Monthly Weather Review,2001,129(3):420-436.
8 MIYOSHI T,YAMANE S,ENOMOTO T. Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF)[J]. Sola,2007,3:89-92.
9 HUNT B R,KOSTELICH E J,SZUNYOGH I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman Filter[J]. Physica D:Nonlinear Phenomena,2007,230(1):112-126.
10 MIYOSHI T,YAMANE S. Local ensemble transform Kalman Filtering with an AGCM at a T159/L48 resolution[J]. Monthly Weather Review,2007,135(11):3 841-3 861.
11 FAN Zheng,LI Hong,LIU Xiangwen,et al. Global ocean data assimilation system design and algorithm acceleration based on local Ensemble Transform Kalman Filter[J]. Advances in Earth Science,2019,34(5):531-539.
11 范峥,李宏,刘向文,等. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展,2019,34(5):531-539.
12 KEPERT J D. Covariance localisation and balance in an Ensemble Kalman Filter[J]. Quarterly Journal of the Royal Meteorological Society:A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography,2009,135(642):1 157-1 176.
13 NERGER L,JANJI? T,SCHR?TER J,et al. A regulated localization scheme for ensemble—Based Kalman Filters[J]. Quarterly Journal of the Royal Meteorological Society,2012,138(664):802-812.
14 LUO Xiaodong,LORENTZEN R J,VALESTRAND R,et al. Correlation—Based adaptive localization for ensemble-based history matching: Applied to the norne field case study[J]. SPE Reservoir Evaluation & Engineering,2019,14(1):412-465.
15 RAANES P N,BOCQUET M,CARRASSI A. Adaptive covariance inflation in the Ensemble Kalman Filter by Gaussian scale mixtures[J]. Quarterly Journal of the Royal Meteorological Society,2019,145(718):53-75.
16 MIYOSHI T,KONDO K. A multi-scale localization approach to an Ensemble Kalman Filter[J]. Sola,2013,9(1):170-173.
17 KIRCHGESSNER P,NERGER L,BUNSEGERSTNER A. On the choice of an optimal localization radius in Ensemble Kalman Filter methods[J]. Monthly Weather Review,2014,142(6):2 165-2 175.
18 NERGER L. On serial observation processing in localized Ensemble Kalman Filters[J]. Monthly Weather Review,2015,143(1):1 554-1 567.
19 KONDO K,MIYOSHI T. Impact of removing covariance localization in an Ensemble Kalman Filter: Experiments with 10 240 members using an intermediate AGCM[J]. Monthly Weather Review,2016,144(1):4 849-4 865.
20 WANG Rong,ZHANG Qiang,YUE Ping,et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science,2020,35(4):331-349.
20 王蓉,张强,岳平,等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展,2020,35(4):331-349.
21 ZHANG Qiang,YAO Yubi,LI Yaohui,et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in Northwest China[J]. Advances in Earth Science,2015,30(2):196-211.
21 张强,姚玉璧,李耀辉,等. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展,2015,30(2):196-211.
22 WANG Peng,DENG Hongwei. Study on flood hazard risk zoning based on GIS and logistic regression model[J]. Advances in Earth Science,2020,35(10):1 064-1 072.
22 王鹏,邓红卫. 基于GIS和Logistic回归模型的洪涝灾害区划研究[J]. 地球科学进展,2020,35(10):1 064-1 072.
23 MA Yaoming,HU Zeyong,TIAN Lide,et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science,2014,29(2):207-215.
23 马耀明,胡泽勇,田立德,等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-315.
24 DOU Fangli,LU Qifeng,GUO Yang. Overview of researches on all-sky satellite microwave data variational assimilation[J]. Advances in Earth Science,2019,34(11):1 120-1 130.
24 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展,2019,34(11):1 120-1 130.
25 GAO Li,CHEN Jing,ZHENG Jiawen,et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science,2019,34(7):706-716.
25 高丽,陈静,郑嘉雯,等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展,2019,34(7):706-716.
26 MA Leiming. Development of artificial intelligence technology in weather forecast[J]. Advances in Earth Science,2020,35(6):551-560.
26 马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展,2020,35(6):551-560.
27 CHANG Mingheng,BAI Yulong,MA Xiaoyan,et al. Localization analysis of data assimilation methods coupled with fuzzy control algorithms[J]. Advances in Earth Science,2018,33(8):874-883.
27 常明恒,摆玉龙,马小艳,等. 一种新的耦合模糊控制局地化的同化方法[J]. 地球科学进展,2018,33(8):874-883.
28 MA Xiaoyan,BAI Yulong,TANG Lihong,et al. A new localization method based on fuzzy analysis of observation information[J]. Journal of Geo-information Science,2019,21(12):1 855-1 866.
28 马小艳,摆玉龙,唐丽红,等. 一种新的基于模糊分析观测信息的局地化方法[J]. 地球信息科学学报,2019,21(12):1 855-1 866.
29 LI Xin,LIU Feng,FANG Miao. Harmonizing models and observation: Data assimilation in Earth system science[J]. Science China Earth Sciences,2020,50(9):1 185-1 194.
29 李新,刘丰,方苗. 模型与观测的和弦:地球系统科学中的数据同化[J]. 中国科学:地球科学,2020,50(9):1 185-1 194.
30 OTT E,HUNT B R,SZUNYOGH I,et al. A local Ensemble Kalman Filter for atmospheric data assimilation[J]. Tellus Series A—Dynamic Meteorology and Oceanography,2004,56(5):415-428.
31 MAMDANI E H. Application of fuzzy algorithms for control of simple dynamic plant[J]. Proceedings of the Institution of Electrical Engineers,1974,121(12):1 585-1 588.
32 CHEN Yan,OLIVER D S. Ensemble-based closed-loop optimization applied to brugge field[J]. SPE Reservoir Evaluation & Engineering,2010,13 (1):56-71.
33 BAI Yulong,CHANG Mingheng,XU Baoxiong,et al. Application of fuzzy control to observational error covariance matrices for data assimilation[C] //Antonio J. Fuzzy systems and data mining IV. IOS Press,2019:553-562.
34 BERRY T,SAUER T. Correlation between system and observation errors in data assimilation[J]. Monthly Weather Review,2018,146(9):2 913-2 931.
35 LU Yongnan,BAI Yulong,XU Baoxiong,et al. Observation error handling methods of data assimilation coupled with fuzzy control algorithms[J]. Remete Sensing Technology and Application,2017,32(3):459-465.
35 卢勇男,摆玉龙,徐宝兄,等. 耦合模糊控制算法的数据同化观测误差处理方法[J]. 遥感技术与应用,2017,32(3):459-465.
36 GREYBUSH S J,KALNAY E,MIYOSHI T,et al. Balance and Ensemble Kalman Filter localization techniques[J]. Monthly Weather Review,2011,139(2):511-522.
37 GASPARI G,COHN S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society,1999,125(554):723-757.
38 YIN Yunhua,CHEN Mine,ZHENG Bin,et al. Design and simulation of a fuzzy controller based on matlab[J]. Control Engineering of China,2007,14(5):488-490.
38 殷云华,陈闽鄂,郑宾,等. 基于Matlab的模糊控制器设计及仿真[J]. 控制工程,2007,14(5):488-490.
39 WANG Panbao,WANG Wei,MENG Nina,et al. Multi-objective energy management system for DC microgrids based on the maximum membership degree principle[J]. Journal of Modern Power Systems and Clean Energy,2018,6(4):668-678.
40 LORENZ E N,EMANUEL K A. Optimal sites for supplementary weather observations: Simulation with a small model[J]. Journal of the Atmospheric Sciences,1998,55(3):399-414.
41 WU Guocan,ZHENG Xiaogu. Analysis programme in assimilation of Ensemble Transform Kalman Filter[J]. China Science Paper,2015,10(3):256-260.
41 吴国灿,郑小谷. 集合转换卡尔曼滤波同化的一种分析方案[J]. 中国科技论文,2015,10(3):256-260.
42 HAN Pei,SHU Hong,XU Jianhui. A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science,2014,29(10):1 175-1 185.
42 韩培,舒红,许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展,2014,29(10):1 175-1 185.
43 HOTEIT I,PHAM D,GHARAMTI M E,et al. Mitigating observation perturbation sampling errors in the stochastic EnKF[J]. Monthly Weather Review,2015,143(7):2 918-2 936.
44 HOUTEKAMER P L,ZHANG Fuqing. Review of the Ensemble Kalman Filter for atmospheric data assimilation[J]. Monthly Weather Review,2016,144(12):4 489-4 532.
45 MA Xulin,YU Yueming,CHEN Dehui. The present situation and prospects of the adaptive observation[J]. Acta Meteorologica Sinica,2015,73(2):221-235.
45 马旭林,于月明,陈德辉. 适应性观测研究现状和展望[J]. 气象学报,2015,3(2):21-235.
46 BAI Yulong,LU Yongnan,GUO Pengfei,et al. Observation error handling methods for data assimilation coupled with fuzzy control algorithms[C]//Antonio J. Fuzzy systems and data mining III. IOS Press,2017:152-159.
文章导航

/