收稿日期: 2020-10-05
修回日期: 2020-11-25
网络出版日期: 2021-02-09
基金资助
国家自然科学基金项目“气候变化对青藏高原高寒草地植物物种迁移以及物种多样性的影响预测”(41901068);“使用互相映射的现实与虚拟场景对生态位模型适用性的比较研究”(31772432)
Challenges and Development Trend of Species Distribution Model
Received date: 2020-10-05
Revised date: 2020-11-25
Online published: 2021-02-09
Supported by
the National Natural Science Foundation of China "Predicting the impacts of climate change on plant species migration and species diversity in alpine grassland of Qinghai-Tibet Plateau"(41901068);"A comparative study on ecological niche modelling using real and virtual scenarios"(31772432)
物种分布模型是基于物种已知分布点位数据以及环境因子数据估计物种在特定时空条件下的地理分布的模型工具,是当下生物地理学研究的热点领域,但是对模型构建的背景知识缺乏理解而造成的模型滥用阻碍了其合理的应用与发展。从模型构建和模型应用两个方面,探讨了物种分布模型研究目前所面临的挑战和未来的发展方向,重点展示了我国物种分布模型发展现状,展望了其发展前景。在物种分布模型建模实践中,模型结果的合理性和精确性受建模方法的选择、模型参数设置、模型输入数据等带来的不确定性以及模型外推程度的影响。因此在相关研究中应理解模型的生态学和地学背景,重视模型的统计学规范,合理地选择模型算法。探讨了物种分布模型的重点发展方向,包括:探讨造成物种当前分布格局历史地理原因以及物种生态位演化造成的可能影响;结合谱系生物地理学和景观遗传学原理识别生物地理屏障和避难所、反演物种历史扩散路径;将物种相关作用等生态过程有效的纳入到模型框架中;合理地利用地学海量数据(如遥感数据)提高模型精度等。
郭彦龙 , 赵泽芳 , 乔慧捷 , 王然 , 卫海燕 , 王璐坤 , 顾蔚 , 李新 . 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020 , 35(12) : 1292 -1305 . DOI: 10.11867/j.issn.1001-8166.2020.110
Species Distribution Models (SDMs) are numerical tools that combine observations of species occurrence or abundance with environmental variables database. SDMs tend to be used to simulate the potential distribution of species in a larger scale, under the confirming modeling conditions, which can be extrapolated in space and time. SDMs are now widely used in the fields of climate change biology, landscape ecology and conservation biology, and they are one of the most important tools in current biophysics research. This paper systematically discusses the current challenges and future development of species distribution model from two aspects: i.e., model building and model application. The development status and prospect of species distribution models in China are reviewed. The main viewpoints and conclusions are as follows: In the modeling practice of species distribution model, the rationality and accuracy of model results depend on many factors, including the choice of environmental variables and model algorithms, spatial and temporal scale, the interaction between environmental and geographical factors and the model extrapolation degree. Hence, researchers should understand the theoretical basis of the model, attach importance to the standardization of statistics in the process of modeling, choose and design a reasonable model algorithm. In future research, we need to consider the historical and geographical reasons for the current distribution pattern and the possible impacts of species niche shift, as well as the principles of landscape genetics and phylogeography, which should be effectively incorporated into the model framework. Meanwhile, how to use geoscience big data (remote sensing data) effectively is also one of the challenges for the development of the models.
1 | Elith J, Leathwick J R. Species distribution models: Ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1): 677-697. |
2 | Anderson R P. A framework for using niche models to estimate impacts of climate change on species distributions [J]. Annals of the New York Academy of Sciences, 2013, 1 297(1): 8-28. |
3 | Ranc N, Santini L, Rondinini C, et al. Performance tradeoffs in target-group bias correction for species distribution models [J]. Ecography, 2017, 40: 1 076-1 087. |
4 | Guisan A, Thuiller W, Zimmermann N E. Habitat Suitability and Distribution Models: With Applications in R [M]. Cambridge: Cambridge University Press, 2017. |
5 | Qiao Huijie, Hu Junhua, Huang Jihong. basis Theoretical, directions future, and challenges for ecological niche models [J]. Science China Life Sciences, 2013, 43(11):915-927. |
5 | 乔慧捷, 胡军华, 黄继红.生态位模型的理论基础、发展方向与挑战[J]. 中国科学: 生命科学, 2013, 43(11): 915-927. |
6 | Xu Zhonglin, Peng Huanhua, Peng Shouzhang. The development and evaluation of species distribution models [J]. Acta Ecologica Sinica,2015,35(2):557-567. |
6 | 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法 [J]. 生态学报, 2015, 35(2): 557-567. |
7 | Dyderski M K, Pa? S, Frelich L E, et al. How much does climate change threaten European forest tree species distributions?[J]. Global Change Biology, 2018, 24: 1 150-1 163. |
8 | Mainali K P, Warren D L, Dhileepan K, et al. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling [J]. Global Change Biology, 2016, 21(12): 4 464-4 480. |
9 | Ramirez-Villegas J, Cuesta F, Devenish C, et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change [J]. Journal for Nature Conservation, 2014, 22(5):391-404. |
10 | Guisan A, Rahbek C. SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages [J]. Journal of Biogeography, 2011, 38(8):1 433-1 444. |
11 | Guo Y L, Li X, Zhao Z Z, et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios [J]. Scientific Reports, 2017, 7:46221. |
12 | Mccune J L. Species distribution models predict rare species occurrences despite significant effects of landscape context [J]. Journal of Applied Ecology, 2016, 53(6):1 871-1 879. |
13 | Guisan A, Thuiller W. Predicting species distribution: Offering more than simple habitat models [J]. Ecology Letters, 2005, 8(9):993-1 009. |
14 | Austin M P. Role of regression analysis in plant ecology [J]. Proceedings of the Ecological Society of Australia, 1971, 6: 63-75. |
15 | Joppa L N, McInerny G, Harper R, et al. Computational science Troubling trends in scientific software use[J]. Science, 2013, 340(6 134): 814-815. |
16 | Li X, Wang Y. Applying various algorithms for species distribution modelling [J]. Integrative Zoology, 2013, 8(2):124-135. |
17 | Meynard C N, Quinn J F. Predicting species distributions: A critical comparison of the most common statistical models using artificial species [J]. Journal of Biogeography, 2010, 34(8):1 455-1 469. |
18 | Segurado P, Araujo M B. An evaluation of methods for modelling species distributions [J]. Journal of Biogeography, 2004, 31:1 555-1 568. |
19 | Merow C, Wilson A M, Jetz W. Integrating occurrence data and expert maps for improved species range predictions [J]. Global Ecology and Biogeography, 2016, 26(2): 243-258. |
20 | Mi C, Huettmann F, Guo Y, et al. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas?Three Asian crane species models provide supporting evidence [J]. PeerJ, 2017, 5:e2849. |
21 | Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species' distributions from occurrence data [J]. Ecography, 2006, 29(2):129-151. |
22 | Barbet‐Massin M, Jiguet F, Albert C H, et al. Selecting pseudo-absences for species distribution models: How, where and how many?[J]. Methods in Ecology and Evolution, 2012, 3(2): 327-338. |
23 | Royle J A, Chandler R B, Yackulic C, et al. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions[J]. Methods in Ecology & Evolution, 2012, 3(3): 545-554 |
24 | Ward G, Hastie T, Barry S, et al. Presence-only data and the EM algorithm[J]. Biometrics, 2009, 65(2): 554-563. |
25 | Warren D L, Matzke N J, Iglesias T L. Evaluating presence-only species distribution models with discrimination accuracy is uninformative for many applications[J]. Journal of Biogeography, 2020, 47(1): 167-180. |
26 | Hirzel A H, Hausser J, Chessel D, et al. Ecological niche factor analysis: How to compute habitat-suitability maps without absence data?[J]. Ecology, 2002, 83(7): 2 027-2 036. |
27 | Guo Yanlong, Wei Haiyan, Gu Wei, et al. Potential distributions of Sinopodophyllum hexandrum based on fuzzy matter element model [J]. Acta Ecologica Sinica, 2015, 35(3): 770-778. |
27 | 郭彦龙, 卫海燕, 顾蔚,等.基于模糊物元模型的桃儿七潜在地理分布研究[J]. 生态学报, 2015, 35(3): 770-778. |
28 | Zhang G M, Zhu A X, Windels S K, et al. Modelling species habitat suitability from presence-only data using kernel density estimation[J]. Ecological Indicators, 2018, 93: 387-396. |
29 | Bean W T, Stafford R, Brashares J S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models[J]. Ecography, 2012, 35(3): 250-258. |
30 | Sta B, Halvorsen R, Mazzoni S, et al. Sampling bias in presence-only data used for species distribution modelling: Theory and methods for detecting sample bias and its effects on models[J]. Sommerfeltia, 2018, 38(1):1-53. |
31 | Busby J R. BIOCLIM—A bioclimate analysis and prediction system [J]. Plant Protection Quarterly, 1991, 61: 8-9. |
32 | Walker P A, Cocks K D. HABITAT: A procedure for modeling a disjoint environmental envelop for a plant or animal species [J]. Global Ecology and Biogeography Letters, 1991,1(4):108-118. |
33 | Carpenter G, Gillison A N, Winter J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals [J]. Biodiversity and Conservation, 1993, 2(6):667-680. |
34 | Farber O, Kadmon R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance [J]. Ecological Modelling, 2003, 160(1/2):115-130. |
35 | Guisan A, Edwards Jr T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene [J]. Ecological Modelling, 2002, 157(2/3): 89-100. |
36 | Elith J, Leathwick J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines [J]. Diversity and Distributions, 2007, 13(3): 265-275. |
37 | Edwards Jr T C, Cutler D R, Zimmermann N E, et al. Effects of sample survey design on the accuracy of classification tree models in species distribution models [J]. Ecological Modelling, 2006, 199(2): 132-141. |
38 | Marmion M, Luoto M, Heikkinen R K, et al. The performance of state-of-the-art modelling techniques depends on geographical distribution of species [J]. Ecological Modelling, 2009, 220(24):3 512-3 520. |
39 | Linderman M, Liu J, Qi J, et al. Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data [J]. International Journal of Remote Sensing, 2004, 25(9): 1 685-1 700. |
40 | Guo Q, Kelly M, Graham C H. Support vector machines for predicting distribution of Sudden Oak Death in California [J]. Ecological Modelling, 2005, 182(1): 75-90. |
41 | Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3/4): 231-259. |
42 | Lu C Y, Gu W, Dai A H, et al. Assessing habitat suitability based on Geographic Information System (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China [J]. Ecological Modelling, 2012, 242(3):105-115. |
43 | Zhao Z Z, Guo Y L, Wei H Y, et al. Predictions of the potential geographical distribution and quality of gynostemma pentaphyllum base on the fuzzy matter element model in China [J]. Sustainability, 2017, 9: 1 114. |
44 | Fukuda S. Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes) [J]. Ecological Informatics, 2011, 6(5):286-295. |
45 | Tantipisanuh N, Gale G A, Pollino C. Bayesian networks for habitat suitability modeling: A potential tool for conservation planning with scarce resources [J]. Ecological Applications, 2014, 24(7):1 705-1 718. |
46 | Randin C F, Dirnbock T, Dullinger S, et al. Are niche- based species distribution models transferable in space?[J]. Journal of Biogeography, 2010, 33(10):1 689-1 703. |
47 | Grenouillet G, Buisson L, Casajus N, et al. Ensemble modelling of species distribution: The effects of geographical and environmental ranges [J]. Ecography, 2011, 34(1): 9-17. |
48 | Buisson L, Thuiller W, Casajus N, et al. Uncertainty in ensemble forecasting of species distribution [J]. Global Change Biology, 2010, 16(4):1 145-1 157. |
49 | Thibaud E, Petitpierre B, Broennimann O, et al. Measuring the relative effect of factors affecting species distribution model predictions [J]. Methods in Ecology and Evolution, 2014, 5(9): 947-955. |
50 | Anderson R P, Gonzalez Jr I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent [J]. Ecological Modelling, 2011, 222(15): 2 796-2 811. |
51 | Muscarella R, Galante P J, Soley-Guardia M, et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models [J]. Methods in Ecology and Evolution, 2014, 5(11): 1 198-1 205. |
52 | Qiao H J, Peterson A T, Campbell L P, et al. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios[J]. Ecography, 2016, 39(8): 805-813. |
53 | Hijmans R J, Phillips S, Leathwick J, et al. Dismo: Species Distribution Modeling. R package Version 1.0-15[EB/OL]. 2016. [2020-10-20]. . |
54 | Qiao H J, Soberón J, Peterson A T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation[J]. Methods in Ecology and Evolution, 2015, 6(10): 1 126-1 136. |
55 | Liu C R, White M, Newell G. Measuring and comparing the accuracy of species distribution models with presence-absence data[J]. Ecography, 2011, 34(2): 232-243. |
56 | Phillips S J, Elith J. POC plots: Calibrating species distribution models with presence-only data[J]. Ecology, 2010, 91(8): 2 476-2 484. |
57 | Lobo J M, Jiménez-Valverde A, Real R. AUC: A misleading measure of the performance of predictive distribution models[J]. Global Ecology and Biogeography, 2008, 17(2): 145-151. |
58 | Guillera-Arroita G, Lahoz-Monfort J J, Elith J, et al. Is my species distribution model fit for purpose? Matching data and models to applications[J]. Global Ecology and Biogeography, 2015, 24(3):276-292. |
59 | Liu C, Newell G, White M. On the selection of thresholds for predicting species occurrence with presence-only data[J]. Ecology and Evolution, 2016, 6(1): 337-348. |
60 | Naimi B, Skidmore A K, Groen T A, et al. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling[J]. Journal of Biogeography, 2011, 38(8): 1 497-1 509. |
61 | Naimi B, Hamm N A, Groen T A, et al. Where is positional uncertainty a problem for species distribution modelling?[J]. Ecography, 2014, 37(2): 191-203. |
62 | Albert C H, Yoccoz N G, Edwards T C J, et al. Sampling in ecology and evolution-bridging the gap between theory and practice[J]. Ecography, 2011, 33(6):1 028-1 037. |
63 | Fei S, Yu F. Quality of presence data determines species distribution model performance: A novel index to evaluate data quality[J]. Landscape Ecology, 2015, 31(1): 31-42. |
64 | Fick S E, Hijmans R J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37: 4 302-4 315. |
65 | Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatodaL. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51:83-87. |
66 | Yan Y, Li Y, Wang W J, et al. Range shifts in response to climate change of, Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau[J]. Biological Conservation, 2017, 206:143-150. |
67 | Fourcade Y, Besnard A G, Secondi J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics[J]. Global Ecology and Biogeography, 2018, 27(2):245-256. |
68 | Wan J Z, Wang C J, Yu F H. Impacts of the spatial scale of climate data on the modeled distribution probabilities of invasive tree species throughout the world[J]. Ecological Informatics, 2016, 36:42-49. |
69 | Guo Y L, Li X, Zhao Z F, et al. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China[J]. Science China-Earth Sciences, 2018, 61(11): 1 669-1 684. |
70 | Beale C M, Lennon J J. Incorporating uncertainty in predictive species distribution modelling[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1 586): 247-258. |
71 | Holzmann I, Agostini I, Dematteo K, et al. Using species distribution modeling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America[J]. International Journal of Primatology, 2014, 36(1):1-15. |
72 | Mellert K H, Fensterer V, Küchenhoff H, et al. Hypothesis-driven species distribution models for tree species in the Bavarian Alps[J]. Journal of Vegetation Science, 2011, 22(4):635-646. |
73 | Pearman P B, D'Amen M, Graham C H, et al. Within-taxon niche structure: Niche conservatism, divergence and predicted effects of climate change[J]. Ecography, 2011, 33 (6):990-1 003. |
74 | Pauls S U, Nowak C, Bálint M, et al. The impact of global climate change on genetic diversity within populations and species[J]. Molecular Ecology, 2013, 22(4):925-946. |
75 | Forester B R, Dechaine E G, Bunn A G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions[J]. Diversity and Distributions, 2013, 19(12):1 480-1 495. |
76 | Scoble J, Lowe A J. A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning[J]. Diversity and Distributions, 2010, 16(3):343-353. |
77 | Medley K A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models[J]. Global Ecology and Biogeography, 2010, 19(1):122-133. |
78 | Václavík T, Kupfer J A, Meentemeyer R K. Accounting for multi-scale spatial autocorrelation improves performance of invasive Species Distribution Modelling (iSDM) [J]. Journal of Biogeography, 2015, 39(1):42-55. |
79 | Guo Y L, Li X, Zhao Z F, et al. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China[J]. Science of the Total Environment, 2019, 648:1-11. |
80 | Guisan A, Tingley R, Baumgartner J B, et al. Predicting species distributions for conservation decisions[J]. Ecology Letters, 2013,16(12):1 424-1 435. |
81 | Rovzar C, Gillespie T W, Kawelo K. Landscape to site variations in species distribution models for endangered plants[J]. Forest Ecology and Management, 2016, 369:20-28. |
82 | Liu Xiaotong, Yuan Quan, Ni Jian. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 273-283. |
82 | 刘晓彤, 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学报, 2019, 43(4): 273-283. |
83 | Li J, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century[J]. Agricultural and Forest Meteorology, 2019, 275:243-254. |
84 | Guisan A, Rahbek C. SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages[J]. Journal of Biogeography, 2011, 38(8):1 433-1 444. |
85 | Moor H, Hylander K, Norberg J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits[J]. Ambio, 2015, 44(1):113-126. |
86 | Zimmermann N E, Edwards T C, Graham C H, et al. New trends in species distribution modelling[J]. Ecography, 2010, 33(6): 985-989. |
87 | Patsiou T S, Conti E, Zimmermann N E, et al. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia[J]. Global Change Biology, 2014, 20(7):2 286-2 300. |
88 | Svenning J C, Eiserhardt W L, Normand S, et al. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems[J]. Annual Review of Ecology Evolution and Systematics, 2015, 46(1):551-572. |
89 | Fordham D A, Saltré F, Brown S C, et al. Why decadal to century timescale paleoclimate data is needed to explain present-day patterns of biological diversity and change[J]. Global Change Biology, 2018, 24:1 371-1 381. |
90 | Bakkenes M, Jrm A, Ihle F, et al. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050[J]. Global Change Biology, 2002, 8(4):390-407. |
91 | Searle J B. Phylogeography-the history and formation of species[J]. Integrative and Comparative Biology, 2000, 41(1):134-135. |
92 | Razgour O. Beyond species distribution modeling: A landscape genetics approach to investigating range shifts under future climate change[J]. Ecological Informatics, 2015, 30:250-256. |
93 | Storfer A, Murphy M A, Evans J S, et al. Putting the "landscape" in landscape genetics[J]. Heredity, 2007, 98(3):128-142. |
94 | Anderson R P. When and how should biotic interactions be considered in models of species niches and distributions[J]. Journal of Biogeograph, 2017, 44: 8-17. |
95 | Meier E S, Kienast F, Pearman P B, et al. Biotic and abiotic variables show little redundancy in explaining tree species distributions[J]. Ecography, 2010, 33: 1 038-1 048. |
96 | Heikkinen R K, Luoto M, Virkkala R, et al. Biotic interactions improve prediction of boreal bird distributions at macro-scales[J]. Global Ecology and Biogeography, 2010, 16(6):754-763. |
97 | Meier E S, Edwards T C, Kienast F, et al. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvaticaL[J]. Journal of Biogeography, 2011, 38(2):371-382. |
98 | Strubbe D, Matthysen E, Graham C H. Assessing the potential impact of invasive ring‐necked parakeets Psittacula krameri on native nuthatches Sitta europeae in Belgium[J]. Journal of Applied Ecology, 2010, 47(3):549-557. |
99 | Araújo C B, Marcondes-Machado L O, Costa G C, et al. The importance of biotic interactions in species distribution models: A test of Eltonian noise hypothesis using parrots[J]. Journal of Biogeography, 2014, 41(3):513-523. |
100 | Guo H D. Big Earth data: A new frontier in Earth and information sciences[J]. Big Earth Data, 2017, 1: 4-20. |
101 | Bethanya B, Erica F. Can remote sensing of land cover improve species distribution modelling[J]. Journal of Biogeography, 2010, 35(7):1 158-1 159. |
102 | Estes L D, Reillo P R, Mwangi A G, et al. Remote sensing of structural complexity indices for habitat and species distribution modeling[J]. Remote Sensing of Environment, 2010, 114(4):792-804. |
103 | Cord A, Klein D, Dech S. Remote sensing time series for modeling invasive species distribution: A case study of Tamarix spp. in the US and Mexico[C]// International Congress on Environmental Modelling & Software Modelling for Environments Sake. 2010. |
104 | Engler R, Waser L T, Zimmermann N E, et al. Combining ensemble modeling and remote sensing for mapping individual: Tree species at high spatial resolution[J]. Forest Ecology & Management, 2013, 310(1):64-73. |
105 | Vega G C. Pertierra L R, Olalla-Tárraga M á. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling[J]. Scientific Data, 2017, 4:170078. DOI: 10.1038/sdata.2017.78. |
106 | Qiao H J, Lin C T, Jiang Z G, et al. Marble algorithm: A solution to estimating ecological niches from presence-only records[J]. Scientific Reports, 2015, 5: 14232. |
107 | Qiao H J, Peterson A T, Ji L Q, et al. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling[J]. Methods in Ecology and Evolution, 2017, 8(12): 1 804-1 812. |
108 | Zhu G P, Peterson A T. Do consensus models outperform individual models?Transferability evaluations of diverse modeling approaches for an invasive moth[J]. Biological Invasions, 2017, 19(9): 2 519-2 532. |
109 | Guo Q, Liu Y. ModEco: An integrated software package for ecological niche modeling[J]. Ecography, 2010, 33(4): 637-642. |
110 | Qiao H J, Lin C T, Ji L Q, et al. mMWeb—An online platform for employing multiple ecological niche modeling algorithms[J]. PloS One, 2012, 7(8): e43327. |
111 | Qiao H J, Peterson A T, Campbell L P, et al. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios[J]. Ecography, 2016, 39(8):805-813. |
112 | Duan R Y, Kong X Q, Huang M Y, et al. Sdmvspecies: A software for creating virtual species for species distribution modelling[J]. Ecography, 2015, 38(1): 108-110. |
113 | Feng X, Park D S, Walker C, et al. A checklist for maximizing reproducibility of ecological niche models[J]. Nature Ecology and Evolution, 2019, 3(10):1 382-1 395. |
114 | Liu C, Newell G, White M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites[J]. Ecography, 2019, 42(3): 535-548. |
115 | Liu C, White M, Newell G. Detecting outliers in species distribution data[J]. Journal of Biogeography, 2018, 45(1):164-176. |
116 | Qiao H J, Feng X, Escobar L E, et al. An evaluation of transferability of ecological niche models[J]. Ecography, 2019, 42(3): 521-534. |
/
〈 |
|
〉 |