收稿日期: 2020-08-02
修回日期: 2020-09-30
网络出版日期: 2020-11-30
基金资助
国家自然科学基金杰出青年科学基金项目“变质岩年代学”(41925013)
Garnet Geochronology of Metamorphic Rocks
Received date: 2020-08-02
Revised date: 2020-09-30
Online published: 2020-11-30
Supported by
the National Natural Science Foundation of China “Metamorphic Petrochronology”(41925013)
准确厘定地质事件的绝对时间是地学最核心的内容之一,放射性同位素地质年代学是最为可靠的绝对定年方法。近半个世纪以来,国际上以固体岩石为定年对象的长周期定年体系的进展乏善可陈,基于石榴石的多同位素定年体系是近10多年来一个在理论和实践中得到长足发展的体系。因为含有多种长周期放射性同位素及其稳定的衰变产物,石榴石可以说是万能的地质年代学定年矿物。随着近些年的化学流程和质谱技术的进步,Sm-Nd和Lu-Hf体系逐渐从众多基于石榴石的定年体系中脱颖而出,成为基于石榴石首选的姊妹定年体系,为变质的时间和过程提供前所未有的分辨率。通过回顾和剖析石榴石姊妹定年体系的基础和发展,及其在获取和解释方面的优势、复杂性和存在的陷阱,指出今后发展的趋势和短期内潜在的突破点。
程昊 , 徐乃潇 . 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020 , 35(10) : 991 -1005 . DOI: 10.11867/j.issn.1001-8166.2020.089
The determination of the Pressure-Temperature-time (P-T-t) path of metamorphic rocks has an essential role in understanding the tectonic evolution of metamorphic rocks. Garnet has played a crucially important part in our understanding of metamorphic and tectonic processes and conditions. The potential of garnet geochronology in metamorphic rock studies lies in the use of the compositional zoning in garnet to elucidate quantitative P-T paths and the coupled application of multiple geochronometers to constrain the timescales of garnet growth. Garnet has long been the mineral of choice for metamorphic chronology because it hosts a remarkable number of long-lived radioactive isotopes and their stable decay products. These include: 238U, 235U and 232Th, which decay via intermediate steps to 206Pb, 207Pb and 208Pb, respectively; 87Rb, which decays to 87Sr; 176Lu, which decays to 176Hf; and 147Sm, which decays to 143Nd. This makes garnet one of the most versatile mineral phases available to geochronologists. As a result of advances in the techniques for sample preparation and measuring Nd-Hf isotopes by Thermal Ionization Mass Spectrometry (TIMS) and Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS), garnet Lu-Hf and Sm-Nd geochronology has been increasingly used to constrain the rates and timing of tectonometamorphic processes in orogenic studies over the last two decades. Metamorphic geochronologists have developed new techniques, such as microsampling, to link garnet ages with textural and petrological fingerprints of particular metamorphic processes, leading to major advances in petrogenesis and tectonics. When combined with petrographic and chemical observations, Lu-Hf and Sm-Nd ages in garnets are able to give unprecedented resolution of the timing and processes of metamorphism, although there are many potential pitfalls in the acquisition and interpretation of these data. This paper provides a brief review of the basic science and development of the garnet Lu-Hf and Sm-Nd systems, highlights the potential of garnet Lu-Hf and Sm-Nd geochronology, and reviews several crucial issues related to the complexities of interpretation of the radiometric ages. Examples, limitations, advantages and potential research directions are presented.
Key words: Geochronology; Garnet; Metamorphic rocks
1 | Griffin W L, Brueckner H K. Caledonian Sm-Nd ages and a crustal origin for Norwegian eclogites[J]. Nature, 1980, 285(5 763): 319-321. |
2 | Van Breemen O, Hawkesworth C J. Sm-Nd isotopic study of garnets and their metamorphic host rocks[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1980, 71(2): 97-102. |
3 | Duchêne S, Blichert-Toft J, Luais B, et al. The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism[J]. Nature, 1997, 387(6 633): 586-589. |
4 | Lapen T J, Johnson C M, Baumgartner L P, et al. Burial rates during prograde metamorphism of an ultra-high-pressure terrane: An example from Lago di Cignana, western Alps, Italy[J]. Earth and Planetary Science Letters, 2003, 215(1/2): 57-72. |
5 | Cheng Hao, King R L, Nakamura E, et al. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra‐high‐pressure eclogites from the Dabie orogen[J]. Journal of Metamorphic Geology, 2008, 26(7): 741-758. |
6 | Cheng Hao, Vervoort J D, Dragovic B, et al. Coupled Lu-Hf and Sm-Nd geochronology on a single eclogitic garnet from the Huwan shear zone, China[J]. Chemical Geology, 2018, 476: 208-222. |
7 | Cheng Hao, Bloch E M, Moulas E, et al. Reconciliation of discrepant U-Pb, Lu-Hf, Sm-Nd, Ar-Ar and U-Th/He dates in an amphibolite from the Cathaysia Block in Southern China[J]. Contributions to Mineralogy and Petrology, 2020, 175(1): 4. |
8 | Pollington A D, Baxter E F. High resolution Sm-Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 63-71. |
9 | Seman S, Stockli D F, McLean N M. U-Pb geochronology of grossular-andradite garnet[J]. Chemical Geology, 2017, 460: 106-116. |
10 | Schmidt A, Pourteau A, Candan O, et al. Lu-Hf geochronology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey)[J]. Earth and Planetary Science Letters, 2015, 432: 24-35. |
11 | Cheng Hao, Liu Xiaochun, Vervoort J D, et al. Micro-sampling Lu-Hf geochronology reveals episodic garnet growth and multiple high-P metamorphic events[J]. Journal of Metamorphic Geology, 2016, 34(4): 363-377. |
12 | Gevedon M, Seman S, Barnes J D, et al. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J]. Earth and Planetary Science Letters, 2018, 498: 237-246. |
13 | Mezger K, Hanson G N, Bohlen S R. U-Pb systematics of garnet: Dating the growth of garnet in the late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada[J]. Contributions to Mineralogy and Petrology, 1989, 101(2): 136-148. |
14 | Christensen J N, Rosenfeld J L, DePaolo D J. Rates of tectonometamorphic processes from rubidium and strontium isotopes in Garnet[J]. Science, 1989, 244(4 911): 1 465. |
15 | Qiu Huaning, Wijbrans J R. Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2 354-2 370. |
16 | Kohn M J, Valley J W. Oxygen isotope constraints on metamorphic fluid flow, Townshend Dam, Vermont, U.S.A.[J]. Geochimica et Cosmochimica Acta, 1994, 58(24): 5 551-5 566. |
17 | Romer R L, Xiao Yilin. Initial Pb-Sr(-Nd) isotopic heterogeneity in a single allanite-epidote crystal: Implications of reaction history for the dating of minerals with low parent-to-daughter ratios[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 662-674. |
18 | Sousa J, Kohn M J, Schmitz M D, et al. Strontium isotope zoning in garnet: Implications for metamorphic matrix equilibration, geochronology and phase equilibrium modelling[J]. Journal of Metamorphic Geology, 2013, 31(4): 437-452. |
19 | Schoene B, Condon D J, Morgan L, et al. Precision and accuracy in geochronology[J]. Elements, 2013, 9(1): 19-24. |
20 | Spear F S, Selverstone J. Quantitative P-T paths from zoned minerals: Theory and tectonic applications[J]. Contributions to Mineralogy and Petrology, 1983, 83(3): 348-357. |
21 | Cheng Hao. Garnet Lu-Hf and Sm-Nd geochronology: A time capsule of the metamorphic evolution of orogenic belts[J]. Geological Society, London, Special Publications, 2019, 474(1): 47-67. |
22 | Nicolaysen L O. Graphic interpretation of discordant age measurements on metamorphic rocks[J]. Annals of the New York Academy of Sciences, 1961, 91(2): 198-206. |
23 | Begemann F, Ludwig K R, Lugmair G W, et al. Call for an improved set of decay constants for geochronological use[J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 111-121. |
24 | Lugmair G W, Marti K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39(3): 349-357. |
25 | Kinoshita N, Yokoyama A, Nakanishi T. Half-Life of Samarium-147[J]. Journal of Nuclear and Radiochemical Sciences, 2003, 4(1): 5-7. |
26 | Su Jun, Li Zhihong, Zhu L C, et al. Alpha decay half-life of 147Sm in metal samarium and Sm2O3[J]. The European Physical Journal A, 2010, 46(1): 69-72. |
27 | Hult M, Vidmar T, Roseng?rd U, et al. Half-life measurements of Lutetium-176 using underground HPGe-detectors[J]. Applied Radiation and Isotopes, 2014, 87: 112-117. |
28 | Herr W, Merz E, Eberhardt P, et al. Zur Bestimmung der β-Halbwertszeit des 176Lu durch den Nachweis von radiogenem 176Hf[J]. Zeitschrift für Naturforschung A, 1958, 13(4): 268-273. |
29 | Patchett P J, Tatsumoto M. Lu-Hf total-rock isochron for the eucrite meteorites[J]. Nature, 1980, 288(5 791): 571-574. |
30 | Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium Clock[J]. Science, 2001, 293(5 530): 683. |
31 | S?derlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3): 311-324. |
32 | Blichert-Toft J, Boyet M, Télouk P, et al. 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body[J]. Earth and Planetary Science Letters, 2002, 204(1): 167-181. |
33 | Bizzarro M, Baker J A, Haack H, et al. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites[J]. Nature, 2003, 421(6 926): 931-933. |
34 | Ludwig K R. Mathematical-statistical treatment of data and errors for 230Th/U geochronology[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 631-656. |
35 | Allègre C J. Isotope Geology[M]. Cambridge: Cambridge University Press, 2008. |
36 | Wendt I, Carl C. The statistical distribution of the mean squared weighted deviation[J]. Chemical Geology: Isotope Geoscience Section, 1991, 86(4): 275-285. |
37 | Baxter E F, Scherer E E. Garnet geochronology: Timekeeper of tectonometamorphic processes[J]. Elements, 2013, 9(6): 433-438. |
38 | Jager E, Niggli E, Wenk E. Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen[M]. Bern: Kummerly & Frey, 1967. |
39 | Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40(3): 259-274. |
40 | Mezger K, Essene E J, Halliday A N. Closure temperatures of the Sm-Nd system in metamorphic garnets[J]. Earth and Planetary Science Letters, 1992, 113(3): 397-409. |
41 | Van Orman J A, Grove T L, Shimizu N, et al. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa[J]. Contributions to Mineralogy and Petrology, 2002, 142(4): 416-424. |
42 | Smit M A, Scherer E E, Mezger K. Lu-Hf and Sm-Nd garnet geochronology: Chronometric closure and implications for dating petrological processes[J]. Earth and Planetary Science Letters, 2013, 381: 222-233. |
43 | Bloch E, Ganguly J, Hervig R, et al. 176Lu-176Hf geochronology of garnet I: Experimental determination of the diffusion kinetics of Lu3+ and Hf 4+ in garnet, closure temperatures and geochronological implications[J]. Contributions to Mineralogy and Petrology, 2015, 169(2): 12. |
44 | Scherer E E, Cameron K L, Blichert-Toft J. Lu-hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3 413-3 432. |
45 | Dodson M H. Closure profiles in cooling systems[J]. Materials Science Forum, 1986, 7: 145-154. |
46 | Ganguly J, Tirone M. Relationship between cooling rate and cooling age of a mineral: Theory and applications to meteorites[J]. Meteoritics & Planetary Science, 2001, 36(1): 167-175. |
47 | Th?ni M. Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): Age results, and an evaluation of potential problems for garnet Sm-Nd chronometry[J]. Chemical Geology, 2002, 185(3): 255-281. |
48 | Crock J G, Lichte F E, Wildeman T R. The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography[J]. Chemical Geology, 1984, 45(1): 149-163. |
49 | Caro G, Bourdon B, Birck J, et al. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 164-191. |
50 | Harvey J, Baxter E F. An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1-10 ng)[J]. Chemical Geology, 2009, 258(3): 251-257. |
51 | Lide D R. Handbook of chemistry and physics, section 10[M]//Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions. London: CRC Press, 2003. |
52 | Münker C, Weyer S, Scherer E, et al. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(12). DOI:10.1029/2001GC000183. |
53 | Bast R, Scherer E E, Sprung P, et al. Correction: A rapid and efficient ion-exchange chromatography for Lu-Hf, Sm-Nd, and Rb-Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2 554. |
54 | Ma Qian, Yang Ming, Zhao Han, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1 256-1 262. |
55 | Vervoort J D, Patchett P J, S?derlund U, et al. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(11). DOI:10.1029/2004GC000721. |
56 | Wang Da, Fisher C M, Vervoort J D, et al. Nd isotope re-equilibration during high temperature metamorphism across an orogenic belt: Evidence from monazite and garnet[J]. Chemical Geology, 2020, 551: 119 751. |
57 | Dragovic B, Angiboust S, Tappa M J. Petrochronological close-up on the thermal structure of a paleo-subduction zone W. Alps)[J]. Earth and Planetary Science Letters, 2020, 547: 116 446. |
58 | Burton K W, Keith O'Nions R. High-resolution garnet chronometry and the rates of metamorphic processes[J]. Earth and Planetary Science Letters, 1991, 107(3): 649-671. |
59 | Ducea M N, Ganguly J, Rosenberg E J, et al. Sm-Nd dating of spatially controlled domains of garnet single crystals: A new method of high-temperature thermochronology[J]. Earth and Planetary Science Letters, 2003, 213(1): 31-42. |
60 | Schmidt A, Weyer S, Mezger K, et al. Rapid eclogitisation of the Dabie-Sulu UHP terrane: Constraints from Lu-Hf garnet geochronology[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 203-213. |
61 | Skora S, Lapen T J, Baumgartner L P, et al. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy[J]. Earth and Planetary Science Letters, 2009, 287(3): 402-411. |
62 | Herwartz D, Nagel T J, Münker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience, 2011, 4(3): 178-183. |
63 | Cheng Hao, Cao Dadi. Protracted garnet growth in high‐P eclogite: Constraints from multiple geochronology and P-T pseudosection[J]. Journal of Metamorphic geology, 2015, 33(6): 613-632. |
64 | Briggs S I, Cottle J M, Smit M A. Record of plate boundary metamorphism during Gondwana breakup from Lu-Hf garnet geochronology of the Alpine Schist, New Zealand[J]. Journal of Metamorphic Geology, 2018, 36(7): 821-841. |
65 | Cutts J A, Smit M A, Spengler D, et al. Two billion years of mantle evolution in sync with global tectonic cycles[J]. Earth and Planetary Science Letters, 2019, 528: 115 820. |
66 | Thiessen E J, Gibson H D, Regis D, et al. High-grade metamorphism flying under the radar of accessory minerals[J]. Geology, 2019, 47(6): 568-572. |
67 | Li Shuguang, Xiao Yilin, Deliang Liou, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chemical Geology, 1993, 109(1): 89-111. |
68 | Kelsey D E, Powell R. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system[J]. Journal of Metamorphic Geology, 2011, 29(1): 151-166. |
69 | Kohn M J. Geochemical Zoning in Metamorphic Minerals. Treatise on Geochemistry (Second Edition) [M]. Oxford: Elsevier, 2014. |
70 | Cheng Hao, Zhou Ying, Du Kaiyang, et al. Microsampling Lu-Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt[J]. Journal of Metamorphic Geology, 2018, 36(8):987-1 008. |
71 | Cao Dadi, Cheng Hao, Zhang Lingmin. Pseudosection modelling and garnet Lu-Hf geochronology of HP amphibole schists constrain the closure of an ocean basin between the northern and southern Lhasa blocks, central Tibet[J]. Journal of Metamorphic Geology, 2017, 35(7): 777-803. |
72 | Romer R L, R?tzler J. The role of element distribution for the isotopic dating of metamorphic minerals[J]. European Journal of Mineralogy, 2011, 23(1): 17-33. |
73 | DePaolo D J. Neodymium Isotope Geochemistry: An introduction[M]. Berlin: Springer, 1988. |
74 | Luais B, Duchêne S, de Sigoyer J. Sm-Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks[J]. Tectonophysics, 2001, 342(1): 1-22. |
75 | Pollington A D, Baxter E F. High precision microsampling and preparation of zoned garnet porphyroblasts for Sm-Nd geochronology[J]. Chemical Geology, 2011, 281(3): 270-282. |
76 | Anczkiewicz R, Thirlwall M F. Improving precision and accuracy of the Lu-Hf and Sm-Nd garnet dating by acid leaching[C]//EGS-AGU-EUG Joint Assembly, Abstracts from the Meeting Held in Nice, France,2003: 13 234. |
77 | Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths[M]. Chantilly: Mineralogical Society of America Monograph, 1993: 352-356. |
78 | Harley S L. Ultrahigh temperature granulite metamorphism (1 050 °C, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 1998, 16(4): 541-562. |
79 | Carlson W D. Rates and mechanism of Y, REE, and Cr diffusion in garnet[J]. American Mineralogist, 2012, 97(10): 1 598-1 618. |
80 | Anczkiewicz R, Platt J P, Thirlwall M F, et al. Franciscan subduction off to a slow start: Evidence from high-precision Lu-Hf garnet ages on high grade-blocks[J]. Earth and Planetary Science Letters, 2004, 225(1): 147-161. |
81 | Anczkiewicz R, Thirlwall M, Alard O, et al. Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: Implications for Sm-Nd geochronology and timing of metamorphism in the Red River shear zone[J]. Chemical Geology, 2012, 318/319: 16-30. |
82 | Cheng Hao, DuFrane S A, Vervoort J D, et al. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen[J]. American Mineralogist, 2010, 95(8/9): 1 214-1 223. |
83 | Mezger K, Bohlen S R, Hanson G N. Metamorphic history of the archean pikwitonei granulite domain and the Cross Lake Subprovince, Superior Province, Manitoba, Canada[J]. Journal of Petrology, 1990, 31(2): 483-517. |
84 | Tirone M, Ganguly J, Dohmen R, et al. Rare earth diffusion kinetics in garnet: Experimental studies and applications[J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2 385-2 398. |
85 | Dragovic B, Baxter E F, Caddick M J. Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece[J]. Earth and Planetary Science Letters, 2015, 413: 111-122. |
86 | Dragovic B, Samanta L M, Baxter E F, et al. Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece[J]. Chemical Geology, 2012, 314/317: 9-22. |
87 | Christensen J N, Selverstone J, Rosenfeld J L, et al. Correlation by Rb-Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps[J]. Contributions to Mineralogy and Petrology, 1994, 118(1): 1-12. |
88 | Vance D, O'Nions R K. Isotopic chronometry of zoned garnets: Growth kinetics and metamorphic histories[J]. Earth and Planetary Science Letters, 1990, 97(3): 227-240. |
89 | de Meyer C M C, Baumgartner L P, Beard B L, et al. Rb-Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps[J]. Earth and Planetary Science Letters, 2014, 395: 205-216. |
90 | Gouzu C, Itaya T, Hyodo H, et al. Cretaceous isochron ages from K-Ar and 40Ar/39Ar dating of eclogitic rocks in the Tso Morari Complex, western Himalaya, India[J]. Gondwana Research, 2006, 9(4): 426-440. |
91 | Qiu Huaning, Wijbrans J R. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions[J]. Earth and Planetary Science Letters, 2008, 268(3): 501-514. |
92 | Dewolf C P, Zeissler C J, Halliday A N, et al. The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis[J]. Geochimica et Cosmochimica Acta, 1996, 60(1): 121-134. |
93 | Smith S R, Foster G L, Romer R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147(5): 549-564. |
94 | Millonig L J, Albert R, Gerdes A, et al. Exploring laser ablation U-Pb dating of regional metamorphic garnet-The Straits Schist, Connecticut, USA[J]. Earth and Planetary Science Letters, 2020, 552. DOI:10.1016/j.epsl.2020.116589. |
95 | Tong Shuoyun, Meija J, Zhou Lian, et al. Determination of the isotopic composition of hafnium using MC-ICPMS[J]. Metrologia, 58(4): 1-8. |
/
〈 |
|
〉 |